MOSFET

MOSFET
Transistor MOSFET de empobrecimiento canal N.
Transistor MOSFET de empobrecimiento canal P.

MOSFET son las siglas de Metal Oxide Semiconductor Field Effect Transistor. Consiste en un transistor de efecto de campo basado en la estructura MOS. Es el transistor más utilizado en la industria microelectrónica. Prácticamente la totalidad de los procesadores comerciales están basados en transistores MOSFET.

Contenido

Historia

Fue ideado teóricamente por el austrohúngaro Julius von Edgar Lilienfeld en 1930, aunque debido a problemas de carácter tecnológico y el desconocimiento acerca de cómo se comportan los electrones sobre la superficie del semiconductor no se pudieron fabricar hasta décadas más tarde. En concreto, para que este tipo de dispositivos pueda funcionar correctamente, la intercara entre el sustrato dopado y el aislante debe ser perfectamente lisa y lo más libre de defectos posible. Esto es algo que sólo se pudo conseguir más tarde, con el desarrollo de la tecnología del silicio.

Funcionamiento

Curvas característica y de salida de un transistor MOSFET de acumulación canal n.
Curvas característica y de salida de un transistor MOSFET de deplexión canal n.

Un transistor MOSFET consiste en un sustrato de material semiconductor dopado en el que, mediante técnicas de difusión de dopantes, se crean dos islas de tipo opuesto separadas por un área sobre la cual se hace crecer una capa de dieléctrico culminada por una capa de conductor. Los transistores MOSFET se dividen en dos tipos fundamentales dependiendo de cómo se haya realizado el dopaje:

  • Tipo nMOS: Sustrato de tipo p y difusiones de tipo n.
  • Tipo pMOS: Sustrato de tipo n y difusiones de tipo p.

Las áreas de difusión se denominan fuente(source) y drenador(drain), y el conductor entre ellos es la puerta(gate).

El transistor MOSFET tiene tres estados de funcionamiento:

Estado de corte

Cuando la tensión de la puerta es idéntica a la del sustrato, el MOSFET está en estado de no conducción: ninguna corriente fluye entre fuente y drenador. También se llama mosfet a los aislados por juntura de dos componentes.

Conducción lineal

Al polarizarse la puerta con una tensión negativa (pMOS) o positiva (nMOS), se crea una región de deplexión en la región que separa la fuente y el drenador. Si esta tensión crece lo suficiente, aparecerán portadores minoritarios (electrones en pMOS, huecos en nMOS) en la región de deplexión que darán lugar a un canal de conducción. El transistor pasa entonces a estado de conducción, de modo que una diferencia de potencial entre fuente y drenador dará lugar a una corriente. El transistor se comporta como una resistencia controlada por la tensión de puerta.

Saturación

Cuando la tensión entre drenador y fuente supera cierto límite, el canal de conducción bajo la puerta sufre un estrangulamiento en las cercanías del drenador y desaparece. La corriente entre fuente y drenador no se interrumpe, ya que es debido al campo eléctrico entre ambos, pero se hace independiente de la diferencia de potencial entre ambos terminales.

Modelos matemáticos

  • Para un MOSFET de canal inducido tipo n en su región lineal:

I_{D (Act)} = K [(V_{GS} - V_T)V_{DS} - \frac{V_{DS}^2}{2} ]

donde K = \frac{b\mu_n\epsilon}{LW}en la que b es el ancho del canal, μn la movilidad de los electrones, \epsilon es la permitividad eléctrica de la capa de óxido, L la longitud del canal y W el espesor de capa de óxido.

  • Cuando el transistor opera en la región de saturación, la fórmula pasa a ser la siguiente:

I_{D (Sat)} = \frac{K + 1}{K_0}(V_{GS}-V_{T})^2

Estas fórmulas son un modelo sencillo de funcionamiento de los transistores MOSFET, pero no tienen en cuenta un buen número de efectos de segundo orden, como por ejemplo:

  • Saturación de velocidad: La relación entre la tensión de puerta y la corriente de drenador no crece cuadráticamente en transistores de canal corto.
  • Efecto cuerpo o efecto sustrato: La tensión entre fuente y sustrato modifica la tensión umbral que da lugar al canal de conducción
  • Modulación de longitud de canal.

Aplicaciones

La forma más habitual de emplear transistores MOSFET es en circuitos de tipo CMOS, consistentes en el uso de transistores pMOS y nMOS complementarios. Véase Tecnología CMOS

Las aplicaciones de MOSFET discretos más comunes son:

  • Resistencia controlada por tensión.
  • Circuitos de conmutación de potencia (HEXFET, FREDFET, etc).
  • Mezcladores de frecuencia, con MOSFET de doble puerta.

Ventajas

La principal aplicación de los MOSFET está en los circuitos integrados, p-mos, n-mos y c-mos, debido a varias ventajas sobre los transistores bipolares:

  • Consumo en modo estático muy bajo.
  • Tamaño muy inferior al transistor bipolar (actualmente del orden de media micra).
  • Gran capacidad de integración debido a su reducido tamaño.
  • Funcionamiento por tensión, son controlados por voltaje por lo que tienen una impedencia de entrada muy alta. La intensidad que circula por la puerta es del orden de los nanoamperios.
  • Los circuitos digitales realizados con MOSFET no necesitan resistencias, con el ahorro de superficie que conlleva.
  • La velocidad de conmutación es muy alta, siendo del orden de los nanosegundos.
  • Cada vez se encuentran más en aplicaciones en los convertidores de alta frecuencias y baja potencia.

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Mira otros diccionarios:

  • MOSFET —  MOSFET  (Metal Oxide Semiconductor Field Effect Transistor)  МОП транзистор (MOSFET)   Полевой транзистор со структурой металл оксид полупроводник. Современная цифровая техника построена, в основном, на полевых МОП транзисторах (МОПТ) как более… …   Толковый англо-русский словарь по нанотехнологии. - М.

  • MOSFET — son las siglas de Metal Oxide Semiconductor Field Effect Transistor. Se trata de un dispositivo electrónico de control con aplicaciones en amplificadores de audio (etapa de potencia) aparecidos en la década de 1980. Como cualquier amplificador su …   Enciclopedia Universal

  • MOSFET — der; s, s Kurzw. aus engl. metal oxide semiconductor field effect transistor> unipolarer Feldeffekttransistor in der Halbleitertechnik …   Das große Fremdwörterbuch

  • MOSFET — (metal oxide semiconductor field effect transistor) field effect transistor in which the gate is separated from the conducting channel by an insulation (Electronics) …   English contemporary dictionary

  • MOSFET — Two power MOSFETs in the surface mount package D2PAK. Operating as switches, each of these components can sustain a blocking voltage of 120 volts in the OFF state, and can conduct a continuous current of 30 amperes in the ON state, dissipating up …   Wikipedia

  • MOSFET — Der Metall Oxid Halbleiter Feldeffekttransistor (englisch: metal oxide semiconductor field effect transistor, MOSFET auch MOS FET, selten MOST) ist eine Variante der Feldeffekttransistoren mit isoliertem Gate (IGFET), genauer der Metall Isolator… …   Deutsch Wikipedia

  • MOSFET — Transistor à effet de champ à grille métal oxyde Un transistor à effet de champ (à grille) métal oxyde est un type de transistor à effet de champ ; on utilise souvent le terme MOSFET, acronyme anglais de metal oxide semiconductor field… …   Wikipédia en Français

  • Mosfet — Die Abkürzung MOSFET steht für metal oxide semiconductor field effect transistor (englisch), dt. Metall Oxid Halbleiter Feldeffekttransistor Der Begriff Mosfet steht für: Mosfet (Band), eine oberösterreichische Metal Band …   Deutsch Wikipedia

  • MOSFET — I MOSFET   [Abk. für Metal Oxide Semiconductor Field Effect Transistor, Metalloxidhalbleiterfeldeffekttransistor] der, Feldeffekttransistor (FET) in der …   Universal-Lexikon

  • MOSFET — /ˈmɒsfɛt/ (say mosfet) noun Electronics a field effect transistor etched or formed on a metal oxide layer. {from m(etal) o(xide) s(ilicon) f(ield) e(ffect) t(ransistor)} …  

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”