- Teorema de Ostrwoski y Reich
-
Teorema de Ostrwoski y Reich
El Teorema de Ostrwoski-Reich es un teorema asociado a las técnicas de relajación en Análisis Numérico que puede enunciarse como sigue:
Sea un sistema lineal de ecuaciones de la forma A{x}={b}, siendo A la matriz de coeficientes, {x} el vector de incógnitas, y {b} el vector de términos independientes. Si se quiere resolver el sistema según una técnica de relajación tal que el coeficiente de relajación sea 0<ω<2, con A una matriz simétrica y definido positiva, entonces la técnica de relajación convergerá para cualquier vector inicial aproximación de la solución.
Si además A es tridiagonal,entonces la elección óptima del coeficiente de relajación vendrá dada por la expresión:
ω=2/(1+sqrt(1-rho(T))) siendo ρ(T) el radio espectral de la matriz de transformación del método de Gauss-Seidel asociado al sistema en cuestión.
Categoría: Teoremas
Wikimedia foundation. 2010.