- Teoría de Iwasawa
-
En teoría de números, la Teoría de Iwasawa es una teoría de módulo de Galois de los grupos de clases ideales, que fuera postulada por Kenkichi Iwasawa, hacia 1950, como parte de la teoría de los campos ciclotómicos. A comienzos de 1970, Barry Mazur analizó generalizaciones de la Teoría de Iwasawa a las variedades abelianas. Más recientemente, a comienzos de la década de 1990, Ralph Greenberg propuso una teoría de Iwasawa para motivos.
Contenido
Formulación
Iwasawa parte de observar que existen torres de campos en la teoría de números algebraicos, cuyo grupo de Galois tiene un isomorfismo con el grupo aditivo de los números enteros p-ádicos. Este grupo, normalmente escrito como Γ en la teoría y con notación multiplicativa, puede ser obtenido como un subgrupo de los grupos de Galois de extensiones de campo infinitas (las cuales son por su naturaleza grupos profinitos). El Γ del grupo; es el límite inverso de los grupos aditivos , donde p es un número primo definido y . Lo cual puede ser expresado de otra forma utilizando la dualidad de Pontryagin como: Γ es dual al grupo discreto de todas las p-potencia raíces de la unidad en los números complejos.
Ejemplo
Sea ζ una raíz primitiva p-ésima de la unidad y consideremos la siguiente torre de cuerpos de números:
donde Kn es el cuerpo generado por una raíz primitiva pn + 1-iésima de la unidad.
Esta torre de cuerpos tiene una unión L. Entonces el grupo de Galois de L sobre K es isomorfo a Γ, pues el grupo de Galois de Kn sobre K es . Para obtener un módulo de Galois interesante, Iwasawa tomó el grupo de clases de ideales de Kn, y llamó In a su parte de p-torsión. Existen entonces las aplicaciones norma cuando m > n, y esto da lugar a un sistema inverso. Si llamamos I al límite inverso, se tiene entonces que Γ actúa en I, y es conveniente tener una descripción de esta acción.
La motivación era indudablemente que la p-torsión en el grupo de clase ideal de K ya había sido identificado por Kummer como el principal obstáculo para la demostración directa del último teorema de Fermat. La originalidad del enfoque de Iwasawa 'es escapar hacia infinito' en una nueva dirección. En efecto I es un módulo sobre el anillo de grupo . Este es un anillo bien comportado (regular y de dos dimensiones), lo que implica que es perfectamente posible clasificar módulos sobre él.
Historia
Desde sus comienzos hacia 1950, la teoría ha crecido hasta tomar relevancia. Se detectó una conexión fundamental entre la teoría del módulo, y las funciones L p-ádicas que fueron definidas por Kubota y Leopoldt hacia 1960. Leopoldt partió de los números de Bernoulli, y usó una interpolación para definir los análogos p-ádicos de las funciones L de Dirichlet. Entonces quedó claro que la teoría tenía perspectivas de progresar finalmente desde los resultados primitivos de Kummer relacionados con los números primos regulares.
La conjetura principal de la teoría de Iwasawa fue formulada como una afirmación que los dos métodos de definir las funciones L p-ádicas (mediante teoría del módulo, y por interpolación) debían ser coincidentes, siempre y cuando la misma fuera bien definida. Esto fue demostrado por Barry Mazur y Andrew Wiles para Q, y por Andrew Wiles para todos los campos de números totalmente reales. Estas demostraciones fueron basadas en la demostración de Ken Ribet del teorema de Herbrand alternativo (llamado teorema de Herbrand-Ribet).
Más recientemente, Chris Skinner y Eric Urban basados en el método de Ribet, han anunciado la prueba de la conjetura principal para GL(2). Una prueba más simple del teorema de Mazur-Wiles puede ser obtenida utilizando los sistemas de Euler como lo desarrolló Kolyvagin (ver libro de Washington). Otras generalizaciones de la conjetura principal demostradas utilizando el método de sistema de Euler han sido obtenidas por Karl Rubin.
Referencias
- Greenberg, Ralph, Iwasawa Theory - Past & Present, Advanced Studies in Pure Math. 30 (2001), 335-385. Available at [1].
- Coates, J. and Sujatha, R., Cyclotomic Fields and Zeta Values, Springer-Verlag, 2006
- Lang, S., Cyclotomic Fields, Springer-Verlag, 1978
- Washington, L., Introduction to Cyclotomic Fields, 2nd edition, Springer-Verlag, 1997
- Barry Mazur y Andrew Wiles (1984). «Class Fields of Abelian Extensions of Q». Inventiones Mathematicae 76 (2): pp. 179-330.
- Andrew Wiles (1990). «The Iwasawa Conjecture for Totally Real Fields». Annals of Mathematics 131 (3): pp. 493-540.
- Chris Skinner y Eric Urban (2002). «Sur les deformations p-adiques des formes de Saito-Kurokawa». C. R. Math. Acad. Sci. Paris 335 (7): pp. 581-586.
- Hazewinkel, Michiel, ed. (2001), "Iwasawa theory", Encyclopaedia of Mathematics, Springer, ISBN 978-1-55608-010-4
Wikimedia foundation. 2010.