Grupo de Galois

Grupo de Galois

En matemática, un grupo de Galois es un grupo asociado a un cierto tipo de extensión de cuerpo. El estudio de las extensiones de cuerpos (y los polinomios que dan lugar a ellas) mediante el grupo de Galois es conocido como Teoría de Galois.

Para ver una discusión más elemental de los grupos de Galois en términos de los grupos de permutaciones, ver el artículo sobre Teoría de Galois .

Contenido

Definición de grupo de Galois

Supongamos que E es una extensión del cuerpo F. Consideremos el conjunto de todos los automorfismos de cuerpos de E/F; esto es, los isomorfismos α de E a sí mismo, tal que α(x) = x para cada x en F. Este conjunto de automorfismos junto con la operación de composición de funciones forma un grupo G, denotado habitualmente Aut(E/F) o AutFE.

Si E/F es una extensión de Galois, entonces G es llamado el grupo de Galois de la extensión, y se denota normalmente Gal(E/F). La importancia de que una extensión sea de Galois se debe a que obedece al teorema fundamental de la teoría de Galois.

Se puede demostrar que E es algebraico sobre F si y sólo si el grupo de Galois es profinito.

Ejemplos

En los siguientes casos F es un cuerpo, y C, R, Q son los cuerpos de los números complejos, reales, y racionales, respectivamente. La notación F(a) indica la extensión de cuerpo obtenida por unión de un elemento a al cuerpo F.

  • Gal(F/F) es el grupo trivial que tiene un solo elemento, llamado el automorfismo identidad.
  • Gal(C/R) tiene dos elementos, el automorfismo identidad y el automorfismo de conjugación compleja.
  • Aut(R/Q) es trivial. En efecto, se puede mostar que cualquier Q-automorfismo debe preservar el orden de los números reales y por lo tanto debe ser la identidad.
  • Aut(C/Q) es un grupo infinito.
  • Gal(Q(√2)/Q) tiene dos elementos, el automorfismo identidad y el automorfismo el cual intercambia √2 y −√2.
  • Considérese el cuerpo K = Q(³√2). El grupo Aut(K/Q) contiene únicamente el automorfismo identidad. Esto es porque K no es un extensión normal, puesto que las otras dos raíces cúbicas de 2 (ambas complejas) no se encuentran en la extensión — en otras palabras, K no es un cuerpo de descomposición.
  • Considérese ahora L = Q(³√2, ω), donde ω es la tercera raíz primitiva de la unidad. El grupo Gal(L/Q) es isomorfo a S3, el grupo diédrico de orden 6, y L es, en efecto, el cuerpo de descomposición de x3 − 2 sobre Q.
  • Si q es una potencia prima, y si F = GF(q) y E = GF(qn) denota el cuerpos de Galois de orden q y qn respectivamente, entonces Gal(E/F) es cíclico de orden n.
  • Si f es un polinomio irreducible de grado primo p con coeficientes racionales y exactamente con dos raíces no reales, entonces el Grupo de Galois de f es el grupo simétrico completoSp.

Propiedades

La importancia de una extensión que Galois es que obedece al teorema fundamental de la teoría de Galois: los subgrupos cerrados (con respecto a la topología de Krull mostrada abajo) del grupo de Galois corresponden a cuerpos intermedios de una extensión de cuerpos.

Si E/F es una extensión de Galois, entonces Gal(E/F) puede ser dada una topología, llamada topología de Krull, que lo convierte en un grupo profinito.

Véase también

Referencias

  • Jacobson, Nathan (2009) [1985], Basic algebra I (Second edición), Dover Publications, ISBN 978-0-486-47189-1 

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Поможем сделать НИР

Mira otros diccionarios:

  • Grupo de Galois — En matemáticas, un grupo de Galois es un grupo asociado a un cierto tipo de extensión de cuerpo. El estudio de las extensiones de cuerpos (y los polinomios que dan lugar a ellas) mediante el grupo de Galois es conocido como Teoría de Galois. Para …   Enciclopedia Universal

  • Grupo — (del italiano gruppo), la pluralidad de elementos que forman un conjunto, puede hacer referencia a: Contenido 1 En matemáticas 2 En astronomía 3 En física …   Wikipedia Español

  • Grupo absoluto de Galois — En matemática, el grupo absoluto de Galois GK de un campo K es el grupo de Galois de Ksep sobre K, donde Ksep es una clausura separable de K. Alternativamente es el grupo de todos los automorfismos de la clausura algebraica de K que fija K. El… …   Wikipedia Español

  • Grupo profinito — En matemática, un grupo pro finito G es un grupo que, en cierto modo, está muy próximo a ser finito. Contenido 1 Definición 2 Ejemplos 3 Propiedades 4 Grupos Ind finitos …   Wikipedia Español

  • Grupo nilpotente — En la teoría de grupos, un grupo nilpotente es un grupo que es casi abeliano. En forma más precisa, aplicando repetidamente la operación commutación, [x,y] = x 1y 1xy a cualesquiera elementos del grupo obtenemos la identidad. Los grupos… …   Wikipedia Español

  • Problema de Galois inverso — Problemas no resueltos de la matemática: Todo polinomio con coeficientes racionales lleva asociado un grupo de Galois, pero ¿es cierto que todo grupo finito es grupo de Galois de algún polinomio? En teoría de Galois, el problema de Galois inverso …   Wikipedia Español

  • Teoría de Galois — Évariste Galois (1811–1832) En matemáticas, la teoría de Galois es una colección de resultados que conectan la teoría de cuerpos con la teoría de grupos. La teoría de Galois tiene aplicación a diversos problemas de la teoría de cuerpos, que… …   Wikipedia Español

  • Módulo de Galois — En matemáticas, y particularmente en la teoría de números algebraicos, un módulo de Galois es un módulo para un grupo de Galois G. En forma equivalente, para un grupo de Galois G y un anillo de grupo A[G] de G con respecto a un cierto anillo A,… …   Wikipedia Español

  • Extensión de Galois — Saltar a navegación, búsqueda En álgebra abstracta, una extensión de cuerpo algebraica E/K se dice extensión de Galois (o extensión galoisiana) si es una extensión normal y separable. En este caso, se puede considerar el grupo de Galois de la… …   Wikipedia Español

  • Teorema fundamental de la teoría de Galois — En matemáticas, el teorema fundamental de la teoría de Galois es un resultado que describe la estructura de ciertos tipos de extensiones de cuerpos. En su forma más básica el teorema dice que dada una extensión de cuerpos E/F que sea finita y… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”