Computers and Intractability: A Guide to the Theory of NP-Completeness
- Computers and Intractability: A Guide to the Theory of NP-Completeness
-
En ciencias de la computación, más específicamente en el área de complejidad computacional, Computers and Intractability: A Guide to the Theory of NP-Completeness es un influyente libro de texto escrito por Michael Garey y David S. Johnson.
Fue el primer libro en tratar formalmente la NP-completitud y la intratabilidad.[1] El libro contiene un apéndice que provee un exhaustivo compendio de problemas de NP-completitud, el cual ha sido actualizado en las reimpresiones del libro. Actualmente se encuentra desactualizado en algunos aspectos, como el desarrollo del reciente teorema PCP, tema que no cubre. No obstante, se sigue imprimiendo y es considerado un clásico: en un estudio de 2006, el motor de búsqueda CiteSeer listó este libro como el más citado en la literatura de ciencias de la computación.[2]
Referencias
Categorías:
- Libros de ciencias de la computación
- Libros de 1979
Wikimedia foundation.
2010.
Mira otros diccionarios:
Computers and Intractability: A Guide to the Theory of NP-Completeness — Computers and Intractability: A Guide to the Theory of NP Completeness … Wikipedia
Computational complexity theory — is a branch of the theory of computation in theoretical computer science and mathematics that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. In this context, a… … Wikipedia
Intersection number (graph theory) — In the mathematical field of graph theory, the intersection number of a graph is the smallest number of elements in a representation of G as an intersection graph of finite sets. Equivalently, it is the smallest number of cliques needed to cover… … Wikipedia
Matching (graph theory) — In the mathematical discipline of graph theory, a matching or independent edge set in a graph is a set of edges without common vertices. It may also be an entire graph consisting of edges without common vertices. Covering packing dualities… … Wikipedia
Metric dimension (graph theory) — In graph theory, the metric dimension of a graph G is the minimum number of vertices in a subset S of G such that all other vertices are uniquely determined by their distances to the vertices in S. Finding the metric dimension of a graph is an NP … Wikipedia
Cut (graph theory) — In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. The cut set of the cut is the set of edges whose end points are in different subsets of the partition. Edges are said to be crossing the cut if they are… … Wikipedia
Post correspondence problem — The Post correspondence problem is an undecidable decision problem that was introduced by Emil Post in 1946.[1] Because it is simpler than the halting problem and the Entscheidungsproblem it is often used in proofs of undecidability. Contents 1… … Wikipedia
True quantified Boolean formula — The language TQBF is a formal language in computer science that contains True Quantified Boolean Formulas. A fully quantified boolean formula is a formula in first order logic where every variable is quantified (or bound), using either… … Wikipedia
Travelling salesman problem — The travelling salesman problem (TSP) is an NP hard problem in combinatorial optimization studied in operations research and theoretical computer science. Given a list of cities and their pairwise distances, the task is to find a shortest… … Wikipedia
3-partition problem — The 3 partition problem is an NP complete problem in computer science. The problem is to decide whether a given multiset of integers can be partitioned into triples that all have the same sum. More precisely, given a multiset S of n = 3 m… … Wikipedia