Metal amorfo

Metal amorfo
Muestras de Metal amorfo, con escala en centimetros

Un metal amorfo es un material metálico con una estructura desordenada a escala atómica. A diferencia de la mayoría de los metales, que son cristalinos y por lo tanto tienen un arreglo sumamente ordenado de átomos, los aleados amorfos son no cristalinos. Los materiales en los cuales se produce una estructura así de desordenada en forma directa desde el estado líquido durante la solidificación se llaman "vidrios", por lo que los metales amorfos son comúnmente referidos como "vidrios metálicos" o "metales vítreos". Sin embargo, existen varias formas, además de la solidificación extremadamente rápida, para producir metales amorfos, incluyendo deposición física de vapores, reacciones de estado sólido, implantación de iones, melt spinning, y aleación mecánica. Algunos científicos no consideran a los metales amorfos producidos mediante estas técnicas como vidrios. Sin embargo, los especialistas en materiales consideran generalmente a los aleados amorfos como una única clase de materiales, independientemente de cómo fueron obtenidos.

Anteriormente, pequeños lotes de metales amorfos eran producidos mediante una variedad de métodos de enfriamiento rápido. Por ejemplo, se han producido alambres de metal amorfo mediante pulverización de metal fundido sobre un disco de metal girando. El enfriamiento rápido, en el orden de millones de grados por segundo, es demasiado rápido para permitir la formación de cristales y el material se encuentre "atrapado" en estado vítreo. Más recientemente, se han obtenido una serie de aleaciones con tasa de enfriamiento crítica lo suficientemente baja como para permitir la formación de estructuras amorfas en capas gruesas (más de 1 milímetro). Éstos se conocen como vidrios metálicos de espesor (bulk metallic glasses (BMG)). Liquidmetal vende una serie de BMGs de base titanio, desarrollados en estudios llevados a cabo originalmente en Caltech. Hace poco se han producido lotes de aceros amorfos que muestran resistencias mucho mayores que aceros aleados convencionales.

Contenido

Historia

El primer vidrio metalico reportado fue una aleación (Au75Si25) producida en Caltech por W. Klement (Jr.), Willens y Duwez en 1960.[1] Esta y otras primitivas aleaciones formadoras de vidro metalico tenian que ser enfriadas extremadamente rapido (en un orden de megakelvin por segundo, 106 K/s) para evitar su cristalización. Una consecuencia importante de esto fue que los vidrios metálicos solo podían producir un limitado numero de formas (por lo general listones, laminas o cables) en donde una dimensión era muy pequeña, para que con ello el calor pudiera ser extraído lo suficientemente rápido para alcanzar la optima velocidad de enfriamiento. Como resultado, los especímenes de vidrio metálico (salvo algunas excepciones) estaban limitados a un grosor de menos de 100 micrómetros.

En 1969, dentro de una aleación de 77.5% paladio, 6% cobre, y 16.5% silicio se encontró que tenia un rango crítico de enfriamiento de entre 100 a 1000 K/s.

In 1976, H. Liebermann and C. Graham developed a new method of manufacturing thin ribbons of amorphous metal on a supercooled fast-spinning wheel.[2] This was an alloy of iron, nickel, phosphorus and boron. The material, known as Metglas, was commercialized in early 1980s and used for low-loss power distribution transformers (Amorphous metal transformer). Metglas-2605 is composed of 80% iron and 20% boron, has Curie temperature of 373 °C and a room temperature saturation magnetization of 1.56 teslas.[3]

In the early 1980s, glassy ingots with 5 mm diameter were produced from the alloy of 55% palladium, 22.5% lead, and 22.5% antimony, by surface etching followed with heating-cooling cycles. Using boron oxide flux, the achievable thickness was increased to a centimeter.

The research in Tohoku University and Caltech yielded multicomponent alloys based on lanthanum, magnesium, zirconium, palladium, iron, copper, and titanium, with critical cooling rate between 1 K/s to 100 K/s, comparable to oxide glasses.

In 1988, alloys of lanthanum, aluminium, and copper ore were found to be highly glass-forming.

In the 1990s, however, new alloys were developed that form glasses at cooling rates as low as one kelvin per second. These cooling rates can be achieved by simple casting into metallic molds. These "bulk" amorphous alloys can be cast into parts of up to several centimeters in thickness (the maximum thickness depending on the alloy) while retaining an amorphous structure. The best glass-forming alloys are based on zirconium and palladium, but alloys based on iron, titanium, copper, magnesium, and other metals are also known. Many amorphous alloys are formed by exploiting a phenomenon called the "confusion" effect. Such alloys contain so many different elements (often a dozen or more) that upon cooling at sufficiently fast rates, the constituent atoms simply cannot coordinate themselves into the equilibrium crystalline state before their mobility is stopped. In this way, the random disordered state of the atoms is "locked in".

In 1992, the first commercial amorphous alloy, Vitreloy 1 (41.2% Zr, 13.8% Ti, 12.5% Cu, 10% Ni, and 22.5% Be), was developed at Caltech, as a part of Department of Energy and NASA research of new aerospace materials. More variants followed.[cita requerida]

In 2004, two groups succeeded in producing bulk amorphous steel, one at Oak Ridge National Laboratory, the other at University of Virginia. The Oak Ridge group refers to their product as "glassy steel". The product is non-magnetic at room temperature and significantly stronger than conventional steel, though a long research and development process remains before the introduction of the material into public or military use.[4] [5]

Propiedades

Amorphous metal is usually an alloy rather than a pure metal. The alloys contain atoms of significantly different sizes, leading to low free volume (and therefore up to orders of magnitude higher viscosity than other metals and alloys) in molten state. The viscosity prevents the atoms moving enough to form an ordered lattice. The material structure also results in low shrinkage during cooling, and resistance to plastic deformation. The absence of grain boundaries, the weak spots of crystalline materials, leads to better resistance to wear and corrosion. Amorphous metals, while technically glasses, are also much tougher and less brittle than oxide glasses and ceramics.

Thermal conductivity of amorphous materials is lower than of crystals. As formation of amorphous structure relies on fast cooling, this limits the maximum achievable thickness of amorphous structures.

To achieve formation of amorphous structure even during slower cooling, the alloy has to be made of three or more components, leading to complex crystal units with higher potential energy and lower chance of formation. The atomic radius of the components has to be significantly different (over 12%), to achieve high packing density and low free volume. The combination of components should have negative heat of mixing, inhibiting crystal nucleation and prolongs the time the molten metal stays in supercooled state.

The alloys of boron, silicon, phosphorus, and other glass formers with magnetic metals (iron, cobalt, nickel) are magnetic, with low coercivity and high electrical resistance. The high resistance leads to low losses by eddy currents when subjected to alternating magnetic fields, a property useful for e.g. transformer magnetic cores.

Amorphous alloys have a variety of potentially useful properties. In particular, they tend to be stronger than crystalline alloys of similar chemical composition, and they can sustain larger reversible ("elastic") deformations than crystalline alloys. Amorphous metals derive their strength directly from their non-crystalline structure, which does not have any of the defects (such as dislocations) that limit the strength of crystalline alloys. One modern amorphous metal, known as Vitreloy, has a tensile strength that is almost twice that of high-grade titanium. However, metallic glasses at room temperature are not ductile and tend to fail suddenly when loaded in tension, which limits the material applicability in reliability-critical applications, as the impending failure is not evident. Therefore, there is considerable interest in producing metal matrix composite materials consisting of a metallic glass matrix containing dendritic particles or fibers of a ductile crystalline metal.

Perhaps the most useful property of bulk amorphous alloys is that they are true glasses, which means that they soften and flow upon heating. This allows for easy processing, such as by injection molding, in much the same way as polymers. As a result, amorphous alloys have been commercialized for use in sports equipment, medical devices, and as cases for electronic equipment.

Thin films of amorphous metals can be deposited via high velocity oxygen fuel technique as protective coatings.

Aplicaciones

Amorphous metals (metallic glasses) exhibit unique softening behavior above their glass transition and this softening has been increasingly explored for thermoplastic forming of metallic glasses.

It has been shown that metallic glasses can be patterned on extremely small length scales ranging from 10 nm to several millimeters.[6] It has been suggested that this may solve the problems of nanoimprint lithography where expensive nano-molds made of silicon break easily. Nano-molds made from metallic glasses are easy to fabricate and more durable than silicon molds.

Ti40Cu36Pd14Zr10 is believed to be noncarcinogenic, is about 3 times stronger than titanium, and its elastic modulus nearly matches bones. It has a high wear resistance and does not produce abrasion powder. The alloy does not undergo shrinkage on solidification. A surface structure can be generated that is biologically attachable by surface modification using laser pulses, allowing better joining with bone.[7]

Mg60Zn35Ca5, rapidly cooled to achieve amorphous structure, is being investigated as a biomaterial for implantation into bones as screws, pins, or plates, to fix fractures. Unlike traditional steel or titanium, this material dissolves in organisms at a rate of roughly 1 millimeter per month and is replaced with bone tissue. This speed can be adjusted by varying the content of zinc.[8]

Referencias

  1. «Non-crystalline Structure in Solidified Gold-Silicon Alloys». Nature 187:  pp. 869–870. 1960. doi:10.1038/187869b0. 
  2. Libermann H. and Graham C. (1976). «Production Of Amorphous Alloy Ribbons And Effects Of Apparatus Parameters On Ribbon Dimensions». IEEE Transactions on Magnetics 12 (6):  p. 921. doi:10.1109/TMAG.1976.1059201. http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=22822&arnumber=1059201&count=158&index=111. 
  3. Roya, R and A.K. Majumdara (1981). «Thermomagnetic and transport properties of metglas 2605 SC and 2605». Journal of Magnetism and Magnetic Materials 25:  pp. 83–89. doi:10.1016/0304-8853(81)90150-5. 
  4. «Glassy Steel». ORNL Review 38 (1). 2005. http://www.ornl.gov/info/ornlreview/v38_1_05/article17.shtml. 
  5. V. Ponnambalam, S. Joseph Poon and Gary J. Shiflet (2004). «Fe-based bulk metallic glasses with diameter thickness larger than one centimeter». Journal of Materials Research 19 (5):  pp. 1320. doi:10.1557/JMR.2004.0176. http://lucy.mrs.org/publications/jmr/jmra/2004/may/0176.html. 
  6. Golden Kumar, Hong Tang, and Jan Schroers (Feb 2009). «Nanomoulding with amorphous metals». Nature 457 (7231):  pp. 868–72. doi:10.1038/nature07718. PMID 19212407. 
  7. Masaaki Maruyama. «Japanese Universities Develop Ti-based Metallic Glass for Artificial Finger Joint», Tech-on, Jun 11, 2009.
  8. «Fixing bones with dissolvable glass», PhysicsWorld, Oct 1, 2009.

Enlaces externos

Véase también

  • Glass-ceramic-to-metal seals
  • Materials science
  • Bioabsorbable metallic glass

Wikimedia foundation. 2010.

Игры ⚽ Поможем сделать НИР

Mira otros diccionarios:

  • Sólido amorfo — Diagrama molecular del vidrio (SiO2) en sólido amorfo. Diagrama molecular del cu …   Wikipedia Español

  • Acero eléctrico — El acero eléctrico, también llamado acero magnético, acero al silicio, o acero para transformadores, es un acero especial fabricado para poseer determinadas propiedades magnéticas, tales como una zona de histéresis pequeña (poca disipación de… …   Wikipedia Español

  • Célula fotoeléctrica — Saltar a navegación, búsqueda Celda fotovoltaica policristalina solar de 4 pulgadas Una célula fotoeléctrica, también llamada célula, fotocélula o celda fotovoltaica, es un dispositivo electrónico que permite transformar la energía luminosa… …   Wikipedia Español

  • Moldeo por inyección — Máquina de inyección de plástico. En ingeniería, el moldeo por inyección es un proceso semicontinuo que consiste en inyectar un …   Wikipedia Español

  • Carbono — Boro ← Carbono → Nitrógeno   …   Wikipedia Español

  • PRAM — La memoria de cambio de fase (phase change RAM, también llamada PRAM, PCRAM, PCM, Ovonic unified memory memoria ovónica unificada y C RAM, de calcógeno) es un tipo de memoria no volátil. Utiliza vidrio calcógeno (anfígeno) que puede configurarse… …   Wikipedia Español

  • Antimonio — Estaño ← Antimonio → Telurio As   …   Wikipedia Español

  • Oro — Para otros usos de este término, véase Oro (desambiguación). Platino ← Oro → Mercurio Ag …   Wikipedia Español

  • Nanotubo — Nanotubos de carbono. Representación de l …   Wikipedia Español

  • Cristal — Para otros usos de este término, véase Cristal (desambiguación). En física del estado sólido y química, un cristal es un sólido homogéneo que presenta una estructura interna ordenada de sus partículas reticulares, sean átomos, iones o moléculas.… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”