Irving Copi

Irving Copi

Irving Marmer Copi (apellido de origen: Copilovich, 28 de julio de 1917, Duluth, Minnesota19 de agosto de 2002, Honolulu, Hawái) fue un filosofo, lógico y autor de varios textos universitarios.

Copi dictó clases en la Universidad de Illinois, en la Academia de la Fuerza Aérea de los Estados Unidos, en la Universidad de Princeton y en la Universidad "Instituto Lógico" de Georgetown, antes de terminar su carrera enseñando lógica en la Universidad de Míchigan desde 1958 hasta 1969. En sus últimos años Copi decidió alejarse y termino su carrera dando clase en la Universidad de Hawaii en Manoa desde 1969 hasta 1990.

Irving Copi saltó a la fama luego de publicar Introducción a la lógica (Introduction to Logic) y La lógica informal (Informal Logic), ambas obras muy usadas hasta la actualidad, llegando a la décimo tercera edición.

Libros escritos por Copi

  • 1969 (1953). Introducción a la lógica (Introduccion to Logic - Macmillan)
  • 1954 Lógica simbólica (Symbolic Logic - Macmillan)
  • 1965 Lenguaje, Pensamiento y Cultura. Editado junto a Paul Hente (Language, Thought and Culture - The University of Michigan Press)
  • 1966 Ensayos sobre "Wittgenstein's Tractatus". Editado junto a Robert Beard. (Essays on Wittgenstein's Tractatus) Tractatus logico-philosophicus
  • 1967 Lectura contemporánea en teorías lógicas. Editado junto a James Gould. (Contemporary Readings in Logical Theory - Macmillan)
  • 1971 La teoría de los tipos lógicos. Con Routledge and Kegan Paul (The theory of logical types)
  • 1986 Lógica Informal. Con Keith Burgess-Jackson. (Informal Logic - Macmillan)

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Поможем написать реферат

Mira otros diccionarios:

  • Irving Copi — Irving Marmer Copi (born Copilovich, July 28 1917, Duluth, Minnesota ndash;August 19 2002, Honolulu, Hawaii) was an American philosopher, logician, and university textbook author.Copi taught at the University of Illinois, the United States Air… …   Wikipedia

  • Contraposition (traditional logic) — In traditional logic, contraposition is a form of immediate inference in which from a given proposition another is inferred having for its subject the contradictory of the original predicate, and in some cases involving a change of quality… …   Wikipedia

  • Argument from ignorance — The argument from ignorance, also known as argumentum ad ignorantiam ( appeal to ignorance [ [http://philosophy.lander.edu/logic/ignorance.html Argumentum ad Ignorantiam ] ] ) or argument by lack of imagination, is a logical fallacy in which it… …   Wikipedia

  • Obversion — In traditional logic, obversion is a type of immediate inference in which from a given proposition another proposition is inferred whose subject is the same as the original subject, whose predicate is the contradictory of the original predicate,… …   Wikipedia

  • Conversion (logic) — Conversion is a concept in traditional logic referring to a type of immediate inference in which from a given proposition another proposition is inferred which has as its subject the predicate of the original proposition and as its predicate the… …   Wikipedia

  • Liste de personnes par nombre d'Erdős — Voici une liste non exhaustive de personnes ayant un nombre d Erdős de 0, 1 ou 2. Sommaire 1 #0 2 #1 3 #2 4 Référence …   Wikipédia en Français

  • List of people by Erdős number — Paul Erdős was one of the most prolific writers of mathematical papers. He collaborated a great deal, having 511 joint authors, a number of whom also have many collaborators. The Erdős number measures the collaborative distance between an author… …   Wikipedia

  • Syllogism — A syllogism (Greek: συλλογισμός – syllogismos – conclusion, inference ) is a kind of logical argument in which one proposition (the conclusion) is inferred from two or more others (the premises) of a certain form. In antiquity, there were… …   Wikipedia

  • Liste de personnes par nombre d'Erdos — Liste de personnes par nombre d Erdős Liste des personne avec un nombre d Erdős de 0, 1 ou 2. Sommaire 1 #0 2 #1 3 #2 4 Liens externes // …   Wikipédia en Français

  • Soundness — In mathematical logic, a logical system has the soundness property if and only if its inference rules prove only formulas that are valid with respect to its semantics. In most cases, this comes down to its rules having the property of preserving… …   Wikipedia

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”