- Moda (estadística)
-
En estadística, la moda es el valor con una mayor frecuencia en una distribución de datos.
Hablaremos de una distribución bimodal de los datos adquiridos en una columna cuando encontremos dos modas, es decir, dos datos que tengan la misma frecuencia absoluta máxima. Una distribución trimodal de los datos es en la que encontramos tres modas. Si todas las variables tienen la misma frecuencia diremos que no hay moda.
El intervalo modal es el de mayor frecuencia absoluta. Cuando tratamos con datos agrupados antes de definir la moda, se ha de definir el intervalo modal.
La moda, cuando los datos están agrupados, es un punto que divide al intervalo modal en dos partes de la forma p y c-p, siendo c la amplitud del intervalo, que verifiquen que:
Siendo la frecuencia absoluta del intervalo modal las frecuencias absolutas de los intervalos anterior y posterior, respectivamente, al intervalo modal.
Contenido
Moda de datos agrupados
Para obtener la moda en datos agrupados se usa la siguiente fórmula:
Donde:
Li − 1 = Límite inferior de la clase modal.
D1 = es el delta de frecuencia absoluta modal y la frecuencia absoluta premodal.
D2 = es el delta de frecuencia absoluta modal y la frecuencia absoluta postmodal.
i = intervalo.Ejemplo
Encontrar la estatura modal de un grupo que se encuentra distribuido de la siguiente forma:
Entre 1 y 1.10 hay 1 estudiante
Entre 1.10 y 1.15 hay 1,5 estudiantes
Entre 1.20 y 1.25 hay 2 estudiantes
Entre 1.30 y 1.35 hay 2,3 estudiantes.
Entre 1.45 y 1.55 hay 3 estudiantes.
Entre 1.50 y 1.60 hay 4 estudiantes.
Entre 1.60 y 1.70 hay 10 estudiantes.
Entre 1.70 y 1.80 hay 8 estudiantes.Clase modal = 1.60 y 1.70 (es la que tiene frecuencia absoluta más alta, 10)
Li-1 = 1.60 D1 = 6 D2 = 2 i = 0.10
Moda = 1.60 + (6/8) * 0.1 = 1.675
Método proyectivo
Con base en el Método Proyectivo se obtiene la moda de la siguiente manera usando el ejemplo anterior:
1.- Se Identifica la clase modal, que es la clase que tiene más frecuencias.
2.- Se identifica las diferencias con las clases vecinas.
3.- Se hace un cambio de escalaEn el Ejemplo anterior:
1.- Clase con más frecuencias: 1.60 a 1.70 (con 10 frecuencias)
2.- Diferencias con las clases vecinas: 2 (clase superior) y 6 (clase inferior) que se obtiene de restar (10-8) y (10-4)
3.-Cambio de escala:
Distancia parcial en la escala uno es a la distancia total de la misma escala como el valor buscado es a la distancia total de la escala dos.Resolviendo:
Se suma 0.075 (la distancia parcial) a 1.60 (el límite inferior), obteniéndose la moda.
Propiedades
Sus principales propiedades son:
- Cálculo sencillo.
- Interpretación muy clara.
- Al depender sólo de las frecuencias, puede calcularse para variables cualitativas. Es por ello el parámetro más utilizado cuando al resumir una población no es posible realizar otros cálculos, por ejemplo, cuando se enumeran en medios periodísticos las características más frecuentes de determinado sector social. Esto se conoce informalmente como "retrato robot".[1]
Inconvenientes
- Su valor es independiente de la mayor parte de los datos, lo que la hace muy sensible a variaciones muestrales. Por otra parte, en variables agrupadas en intervalos, su valor depende excesivamente del número de intervalos y de su amplitud.
- Usa muy pocas observaciones, de tal modo que grandes variaciones en los datos fuera de la moda, no afectan en modo alguno a su valor.
- No siempre se sitúa hacia el centro de la distribución.
- Puede haber más de una moda en el caso en que dos o más valores de la variable presenten la misma frecuencia (distribuciones bimodales o multimodales).
Referencias
- ↑ Santos, María José (abril 2009). «Retrato robot del alcalde metropolitano». El Correo de Andalucía. http://www.correoandalucia.com/noticia.asp?idnoticia=4424170096095100100092424170. Consultado el 07-04-2009.
Véase también
- Frecuencia
- Media (intervalo)
- Mediana (estadística)
- Parámetro estadístico
- Valor esperado
Enlaces externos
- [1] Simulación de la moda de una variable discreta con R (lenguaje de programación)
Wikimedia foundation. 2010.