- Cálculo de antenas
-
Cálculo de antenas
Los ejemplos de cálculo de antenas que siguen sólo tienen por objeto mostrar el funcionamiento de algunos casos y el origen de la ganancia y de la impedancia. Los cálculos son aproximados y no tienen en cuenta, por ejemplo, el grueso de los elementos de la antena, que aquí son considerados como finos. Tampoco se tiene en cuenta la influencia de la Tierra. Las longitudes de los dipolos y sus separaciones son arbitrarias y no tienen tal vez ninguna utilidad en la realidad. Los cálculos obtenidos con los programas dados como enlaces externos son probablemente más útiles en la práctica.
Salvo indicación contraria, todos los ángulos están en radianes.
Contenido
Dipolo cuarto de onda
Una antena o "cuarto de onda" es una antena de de largo colocada verticalmente sobre un plano dieléctrico o conductor que le sirve de reflector. La imagen de la antena parece recorrida por una corriente que tiene el mismo sentido que la de la antena real. El conjunto forma una antena pero que solo radia, por supuesto, hacia arriba. Es preferible que el plano sea conductor, porque un dieléctrico solo refleja bien las ondas electromagnéticas que cuando la incidencia es rasante.
Pero en el buen lado del reflector (hacia arriba) el campo eléctrico y luego la potencia por metro cuadrado es el mismo que el producido por un dipolo alimentado con la misma corriente. Pero como la potencia total es la mitad de la que emitiría el dipolo , la resistencia en serie de la impedancia de la antena es igual a la mitad de la resistencia de un dipolo . Es decir ohmios, ya que la parte reactiva también esta dividida por dos. La ganancia de la antena es la misma que la de un dipolo o sea 2,14 dBi.
Cuando la tierra no es utilizable, como en un vehículo, se puede utilizar el techo metálico de este mismo como plano de tierra. En otros casos se puede simular un plano de tierra con una rejilla conductora o simplemente con varillas radiales al pie del cuarto de onda. Ese tipo de antena se llama ground-plane. Modificando la inclinación de las varillas se modifica también el diagrama de radiación y, por supuesto, la impedancia.
==
Dipolo con diedro reflector
Si, en lugar de colocar una superficie plana como reflector, se utiliza un diedro formado por superficies o rejillas metálicas las ondas emitidas por el dipolo se reflejan una o dos veces en las superficies y el resultado es equivalente a añadir antenas imágenes suplementarias. En el ejemplo de la derecha, el ángulo escogido para el diedro es de 90°. Eso hace aparecer dos imágenes de un solo reflejo y otra de dos reflejos. Si el ángulo hubiese sido 60° habrían aparecido 5 imágenes: 3 negativas y dos positivas.
En este ejemplo, hemos puesto la separación entre el dipolo y el vértice del diedro . La distancia entre la antena 1 (el dipolo) y la antena 3 es de . La distancia entre el dipolo y las antenas 2 y 4 es de .
Como en el caso precedente solo necesitamos la primera ecuación del sistema de la describe ya que conocemos las corrientes:
Sabemos que:
Luego:
La impedancia es
En las mismas curvas que en el caso precedente encontramos:
- ohmios
- ohmios
- ohmios
Eso nos da una impedancia de la antena:
- ohmios
El campo eléctrico lejano es:
En estas ecuaciones, es el campo producido por un dipolo solo. En la mejor dirección, para , ese campo vale:
Lo que nos permite de calcular la ganancia:
- dBi
Antena Yagi-Uda a dos elementos
Puede encontrar una explicación del funcionamiento des esta antena en Yagi.
En el ejemplo de la derecha hemos construido un caso simple de antena Yagi-Uda. Este ejemplo solo comporta un elemento alimentado de y un director de de largo a de distancia. Buscando en las curvas adecuadas encontramos:
El sistema de ecuaciones es:
De la segunda ecuación deducimos:
Vea que, en este caso particular, la corriente en el elemento parásito es más grande que en el elemento alimentado.
El campo lejano de la antena será la suma de los campos producidos por el dipolo alimentado y por el director, pero teniendo en cuenta el desfase:
Donde es el avance de la señal de 2 con respecto a 1 del hecho que el 2 está más cerca del punto de observación que 1:
donde es la separación entre los dos dipolos.
pero
Como solo nos interesamos a la amplitud:
En el dibujo precedente solo hemos representado el término debido a la interferencia, es decir, la raíz cuadrada en la última fórmula. Para obtener el diagrama final aun habría que multiplicarlo por el diagrama de radiación de un dipolo .
Hacia la mejor dirección (para ) el campo lejano vale:
Calculemos la impedancia de la antena:
El cálculo da:
- ohmios.
La ganancia de la antena es:
- dBi
Antena Yagi-Uda a tres elementos
En el dibujo de la derecha, figura una antena Yagi-Uda de tres elementos:
- el elemento alimentado de de longitud.
- un director de situado delante el elemento alimentado.
- un reflector de situado a detrás del elemento alimentado.
En las curvas encontramos:
El sistema de ecuaciones es:
Deducimos:
Después de largos y fastidiosos cálculos con números complejos, obtenemos:
El campo lejano será:
donde
y .Tomando como referencia la fase del elemento alimentado, la fase del director es:
y la fase del reflector es:
El campo lejano de la antena es:
Y su amplitud será:
Para obtenemos . La impedancia de la antena es:
- ohmios.
La ganancia es:
- dBi.
Estos pesados cálculos muestran el mérito de quienes los hicieron cientos de veces, décadas antes de la aparición de computadoras y calculadoras.
Referencias
- Antenas. A. Cardama, L. Jofre, J.M. Rius, J. Romeu, S. Blanch, M. Ferrando. Edicions UPC
- Electronic Radio and Engineering. F.R. Terman. MacGraw-Hill
- Lectures on physics. Feynman, Leighton and Sands. Addison-Wesley
- Classical Electricity and Magnetism. W. Panofsky and M. Phillips. Addison-Wesley
Enlaces externos
- Wikimedia Commons alberga contenido multimedia sobre antenas.
- Curso de antenas para ingenieros
- Antenas para bandas de frecuencias milimétricas
- MMANA: Programa de modelización de antenas gratuito, con versión en español
Categoría: Antenas
Wikimedia foundation. 2010.