Diodo orgánico de emisión de luz

Diodo orgánico de emisión de luz

Un diodo orgánico de emisión de luz, también conocido como OLED (acrónimo inglés de organic light-emitting diode), es un diodo que se basa en una capa electroluminiscente formada por una película de componentes orgánicos que reaccionan, a una determinada estimulación eléctrica, generando y emitiendo luz por sí mismos.

Existen muchas tecnologías OLED diferentes, tantas como la gran diversidad de estructuras (y materiales) que se han podido idear (e implementar) para contener y mantener la capa electroluminiscente, así como según el tipo de componentes orgánicos utilizados.

Las principales ventajas de las pantallas OLED son: más delgados y flexibles, más contrastes y brillos, mayor ángulo de visión, menor consumo y, en algunas tecnologías, flexibilidad. Pero la degradación de los materiales OLED han limitado su uso por el momento. Actualmente se está investigando para dar solución a los problemas derivados de esta degradación, hecho que hará de los OLED una tecnología que puede reemplazar la actual hegemonía de las pantallas LCD (TFT) y de la pantalla de plasma.

Por todo ello, OLED puede y podrá ser usado en todo tipo de aplicaciones: televisores, monitores, pantallas de dispositivos portátiles (teléfonos móviles, PDA, reproductores de audio...), indicadores de información o de aviso, etc., con formatos que bajo cualquier diseño irán desde unas dimensiones pequeñas (2 pulgadas) hasta enormes tamaños (equivalentes a los que se están consiguiendo con LCD). Mediante los OLED también se pueden crear grandes o pequeños carteles de publicidad, así como fuentes de luz para iluminar espacios generales.[1] Además, algunas tecnologías OLED tienen la capacidad de tener una estructura flexible, lo que ya ha dado lugar a desarrollar pantallas plegables o enrollables, y en el futuro quizá pantallas sobre ropa y tejidos, etc.

Contenido

Historia

Prototipo de pantalla OLED de 3,8 cm de diagonal.

La electroluminiscencia en materiales orgánicos fue producida en los años 1950 por Bernanose y sus colaboradores.[2]

En un artículo de 1977, del Journal of the Chemical Society, Shirakawa et al. comunicaron el descubrimiento de una alta conductividad en poliacetileno dopado con yodo.[3] Heeger, MacDiarmid & Shirakawa recibieron el premio Nobel de química de 2000 por el "descubrimiento y desarrollo de conductividad en polímeros orgánicos".[4]

En un artículo de 1990, de la revista Nature, Burroughs et al. comunicaron el desarrollo de un polímero de emisión de luz verde con una alta eficiencia.[5]

Recientemente, en 2008, ha aparecido en castellano un trabajo de revisión y puesta al día sobre la tecnología OLED.[6]

Estructura básica

Un OLED está compuesto por dos finas capas orgánicas: una capa de emisión y una capa de conducción, que a la vez están comprendidas entre una fina película que hace de terminal ánodo y otra igual que hace de cátodo. En general estas capas están hechas de moléculas o polímeros que conducen la electricidad. Sus niveles de conductividad eléctrica se encuentra entre el nivel de un aisladore y el de un conductor, y por ello se los llama semiconductores orgánicos (ver polímero semiconductor).

La elección de los materiales orgánicos y la estructura de las capas determinan las características de funcionamiento del dispositivo: color emitido, tiempo de vida y eficiencia energética.

Estructura básica de un OLED.

Principio de funcionamiento

Se aplica voltaje a través del OLED de manera que el ánodo sea positivo respecto del cátodo. Esto causa una corriente de electrones que fluye en sentido contrario de cátodo a ánodo. Así, el cátodo da electrones a la capa de emisión y el ánodo los sustrae de la capa de conducción.

Seguidamente, la capa de emisión comienza a cargarse negativamente (por exceso de electrones), mientras que la capa de conducción se carga con huecos (por carencia de electrones). Las fuerzas electrostáticas atraen a los electrones y a los huecos, los unos con los otros, y se recombinan (en el sentido inverso de la carga no habría recombinación y el dispositivo no funcionaría). Esto sucede más cerca de la capa de emisión, porque en los semiconductores orgánicos los huecos se mueven más que los electrones (no ocurre así en los semiconductores inorgánicos).

La recombinación es el fenómeno en el que un átomo atrapa un electrón. Dicho electrón pasa de una capa energética mayor a otra menor, liberándose una energía igual a la diferencia entre energías inicial y final, en forma de fotón.

La recombinación causa una emisión de radiación a una frecuencia que está en la región visible, y se observa un punto de luz de un color determinado. La suma de muchas de estas recombinaciones, que ocurren de forma simultánea, es lo que llamaríamos imagen.

Principio de funcionamiento de OLED: 1. Cátodo (-), 2. Capa de emisión, 3. Emisión de radiación (luz), 4 . Capa de conducción, 5. Ánodo (+).

Tecnologías relacionadas

  • SM-OLED (small-molecule OLED)

Los SM-OLED se basan en una tecnología desarrollada por la compañía Eastman Kodak. La producción de pantallas con pequeñas moléculas requiere una deposición en el vacío de las moléculas que se consigue con un proceso de producción mucho más caro que con otras técnicas (como las siguientes). Típicamente se utilizan sustratos de vidrio para hacer el vacío, pero esto quita la flexibilidad a las pantallas aunque las moléculas sí lo sean.

  • PLED (polymer light-emitting diode)

Los PLED o LEP (Light-Emitting Polymers) han sido desarrollados por la Cambridge Display Technology. Se basan en un polímero conductivo electroluminiscente que emite luz cuando le recorre una corriente eléctrica. Se utiliza una película de sustrato muy delgada y se obtiene una pantalla de gran intensidad de color que requiere relativamente muy poca energía en comparación con la luz emitida. El vacío, a diferencia de los SM-OLED, no es necesario y los polímeros pueden aplicarse sobre el sustrato mediante una técnica derivada de la impresión de chorro de tinta comercial (llamada inkjet en inglés). El sustrato usado puede ser flexible, como un plástico PET. Con todo ello, los PLED pueden ser producidos de manera económica.

  • TOLED (transparent OLED)

Los TOLED usan un terminal transparente para crear pantallas que pueden emitir en su cara de delante, en la de atrás, o en ambas consiguiendo ser transparentes. Los TOLED pueden mejorar enormemente el contraste con el entorno, haciendo mucho más fácil el poder ver las pantallas con la luz del sol.

  • SOLED (stacked OLED)

Los SOLED utilizan una arquitectura de píxel novedosa que se basa en almacenar subpíxeles rojos, verdes y azules, unos encima de otros en vez de disponerlos a los lados como sucede de manera normal en los tubos de rayos catódicos y LCD. Las mejoras en la resolución de las pantallas se triplican y se realza por completo la calidad del color.

Implementación en matrices

Aparte de las tecnologías anteriores, las pantallas OLED pueden ser activadas a través de un método de conducción de la corriente por matriz que puede tener dos esquemas diferentes y da lugar a las tecnologías PMOLED y AMOLED.

Principales ventajas

Los OLED ofrecen muchas ventajas en comparación con los LCD, LED y pantallas de plasma.

Más delgados y flexibles: por una parte, las capas orgánicas de polímeros o moléculas de los OLED son más delgadas, luminosas y mucho más flexibles que las capas cristalinas de un LED o LCD. Por otra parte, en algunas tecnologías el sustrato de impresión de los OLED puede ser el plástico, que ofrece flexibilidad frente a la rigidez del cristal que da soporte a los LCD o pantallas de plasma.

Más económicos: en general, los elementos orgánicos y los sustratos de plástico serán mucho más económicos. También, los procesos de fabricación de OLED pueden utilizar conocidas tecnologías de impresión de tinta (en inglés, conocida como inkjet), hecho que disminuirá los costes de producción.

Brillo y contraste: los píxeles de los OLED emiten luz directamente. Por eso, respecto a los LCD posibilitan un rango más grande de colores y contraste.

Menos consumo: los OLED no necesitan la tecnología backlight, es decir, un elemento OLED apagado realmente no produce luz y no consume energía, a diferencia de los LCD que no pueden mostrar un verdadero “negro” y lo componen con luz consumiendo energía continuamente. Así, los OLED muestran imágenes con menos potencia de luz, y cuando son alimentados desde una batería pueden operar largamente con la misma carga.

Más escalabilidad y nuevas aplicaciones: a capacidad futura de poder escalar las pantallas a grandes dimensiones hasta ahora ya conseguidas por los LCD y, sobre todo, poder enrollar y doblar las pantallas en algunas de las tecnologías OLED que lo permiten, abre las puertas a todo un mundo de nuevas aplicaciones que están por llegar.

Mejor visión bajo ambientes iluminados: al emitir su propia luz, una pantalla OLED, puede ser mucho mas visible bajo la luz del sol, que una LCD.

Desventajas y problemas actuales

Tiempos de vida cortos: las capas OLED verdes y rojas tienen largos tiempos de vida, sin embargo la capa azul no es tan duradera, actualmente tienen una duración cercana a las 14.000 horas (8 horas diarias durante 5 años), este periodo de funcionamiento es mucho menor que el promedio de los LCD que dependiendo del modelo y del fabricante pueden llegar a las 60.000 horas. Toshiba y Panasonic han encontrado una manera de resolver este problema con una nueva tecnología que puede duplicar la vida útil de la capa responsable del color azul, colocando la vida útil por encima de la promedio de la de las pantallas LCD. Una membrana metálica ayuda a la luz a pasar desde los polímeros del sustrato a través de la superficie del vidrio más eficientemente que en los OLED actuales. El resultado es la misma calidad de imagen con la mitad del brillo y el doble de la vida útil esperada.

En el 2007, PLED experimentales pudieron sostener 400 cd/m² en brillo por más de 198.000 horas para OLED verdes y 62.000 para los azules.

Proceso de fabricación caro: actualmente la mayoría de tecnologías OLED están en proceso de investigación, y los procesos de fabricación (sobre todo inicialmente) son económicamente elevados, a no ser que se apueste por un diseño que se utilice en economías de escala.

Agua: el agua puede fácilmente estropear en forma permanente los OLED, ya que el material es orgánico, su exposición al agua, tiende a acelerar el proceso de biodegradación, es por esto que el material orgánico de una OLED, suele venir protegido, y aislado del ambiente, por lo que la pantalla es totalmente resistente a ambientes húmedos.

Impacto medioambiental: los componentes orgánicos (moléculas y polímeros) se ha visto que son difíciles de reciclar (alto coste, complejas técnicas). Ello puede causar un impacto al medio ambiente muy negativo en el futuro.

Futuro

En la actualidad existen investigaciones[cita requerida] para desarrollar una nueva versión del LED orgánico que no sólo emita luz, sino que también recoja la energía solar para producir electricidad. De momento no hay ninguna fecha para su comercialización, pero ya se está hablando de cómo hacerlo para su fabricación masiva.[cita requerida] Con esta tecnología se podrían construir todo tipo de pequeños aparatos eléctricos que se podrían autoabastecer de energía.

Referencias

  1. P. Chamorro-Posada, J. Martín-Gil, P. Martín-Ramos, L.M. Navas-Gracia, Diodos orgánicos emisores de luz (OLED) para iluminación de estado sólido. Dpto. de Teoría de la Señal e Ingeniería Telemática, y Dpto. de Ingeniería Agrícola y Forestal, Universidad de Valladolid, Abril 2009. Available online, with permission from the authors, at the webpage: http://www.scribd.com/doc/14715105/OLED-para-iluminacion-de-estado-solido
  2. A Bernanose Electroluminescence of organic compounds 1955 Br. J. Appl. Phys. 6 S54-S55
  3. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc., Chem. Commun. 1977, 578 - 580
  4. Premio Nobel de Química 2000
  5. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Light-emitting diodes based on conjugated polymers, Nature 1990, 347, 539 - 541
  6. P. Chamorro-Posada, J. Martín-Gil, P. Martín-Ramos, L.M. Navas-Gracia, Fundamentos de la Tecnología OLED. Dpto. de Teoría de la Señal e Ingeniería Telemática, y Dpto. de Ingeniería Agrícola y Forestal, Universidad de Valladolid, 2008, D Legal: VA-932-2008; ISBN:978-84-936644-0-4. Available online, with permission from the authors, at the webpage: http://www.scribd.com/doc/13325893/Fundamentos-de-la-Tecnologia-OLED

Véase también

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Mira otros diccionarios:

  • Orgánico — El término Orgánico/a puede hacer referencia a: Abono orgánico Ácido orgánico Alimentos orgánicos, cultivados siguiendo métodos tradicionales sin sustancias sintéticas ni tóxicas. Sinónimo de alimento ecológico. Compuesto orgánico: sustancias… …   Wikipedia Español

  • Led — Diodo emisor de luz Ledes[1] de color rojo, verde y azul de 5 mm. Tipo pasivo optoelectrónico …   Wikipedia Español

  • Obturación óptica multiplexada en tiempo — La obturación óptica multiplexada en tiempo o TMOS (acrónimo del inglés Time Multiplexed Optical Shutter) es una tecnología digital de pantallas en color desarrollada, patentada y comercializada por la compañía tejana Uni Pixel Inc. TMOS está… …   Wikipedia Español

  • Pantalla de cristal líquido — Twisted Nematic (TN). Film de filtro vertical para polarizar la luz que entra. Sustrato de vidrio con electrodos de Óxido de Indio ITO. Las formas de los electrodos determinan las formas negras que aparecen cuando la pantalla se enciende y apaga …   Wikipedia Español

  • Pantalla moduladora interferométrica — Contenido 1 Introducción 2 Funcionamiento 3 Ventajas 4 Bibliografía 5 Véase también …   Wikipedia Español

  • Ching W. Tang — Nacimiento 23 de julio de 1947 Yuen Long, Hong Kong Residencia Rochester, New York, EE. UU …   Wikipedia Español

  • AMOLED — Este artículo o sección sobre tecnología necesita ser wikificado con un formato acorde a las convenciones de estilo. Por favor, edítalo para que las cumpla. Mientras tanto, no elimines este aviso puesto el 5 de noviembre de 2011. También puedes… …   Wikipedia Español

  • Libro electrónico — Un lector de libros electrónicos marca Sony. Un lector de libros electrónicos …   Wikipedia Español

  • LG Display — Fundación 1999 Sede Seúl, Corea del Sur …   Wikipedia Español

  • Láser — Para la clase Láser en náutica, véase Láser (vela). Un haz de láser en el aire viajando cerca del 99,97% de la velocidad de la luz en el vacío (el índice de refracción del aire es alrededor de 1,0003).[1 …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”