Dominio de Dedekind

Dominio de Dedekind

Dominio de Dedekind

En Teoría de anillos se dice de un dominio A que es un dominio de Dedekind si todo ideal de A es proyectivo como A-módulo.

Descripción

Todo dominio de Dedekind es noetheriano. Una propiedad que caracteriza a este tipo de anillos queda reflejada en el siguiente teorema:

Sea A un dominio. A es un dominio de Dedekind si, y sólo si, cada módulo inversible es inyectivo.

Ejemplos clásicos de dominios de Dedekind son los anillos de enteros algebráicos.

Obtenido de "Dominio de Dedekind"

Wikimedia foundation. 2010.

Игры ⚽ Нужна курсовая?

Mira otros diccionarios:

  • Entero cuadrático — En teoría de números, los enteros cuadráticos son una generalización de los enteros racionales a los cuerpos cuadráticos. Entre los ejemplos importantes se incluyen los enteros gaussianos y los enteros de Eisenstein. A pasar de que han sido… …   Wikipedia Español

  • Ideal (teoría de anillos) — En matemáticas, un ideal es una estructura algebraica definida en un anillo. Los ideales generalizan de manera fecunda el estudio de la divisibilidad en los números enteros. De este modo, es posible enunciar versiones muy generales de teoremas… …   Wikipedia Español

  • Emmy Noether — Amalie Emmy Noether Nacimiento 23 de marzo de 1882 Erlangen, Baviera, Alemania Fallecimiento …   Wikipedia Español

  • Axiomas de Zermelo-Fraenkel — Los axiomas de Zermelo Fraenkel, formulados por Ernst Zermelo y Adolf Fraenkel, son un sistema axiomático concebido para formular la teoría de conjuntos. Normalmente se abrevian como ZF o en su forma más común, complementados por el axioma de… …   Wikipedia Español

  • Número — Este artículo trata del concepto matemático. Para el concepto lingüístico véase Número gramatical. Para otros usos de este término, véase Número (desambiguación). Un número es una entidad abstracta que representa una cantidad (de una magnitud).… …   Wikipedia Español

  • Anillo noetheriano — Saltar a navegación, búsqueda En álgebra, un anillo R es noetheriano por la izquierda si sus ideales por la izquierda satisfacen la condición de cadena ascendente. Diremos que un anillo es noetheriano si es noetheriano por la izquierda y por la… …   Wikipedia Español

  • Teoría de cuerpos — La teoría de cuerpos es una rama de la matemática que estudia las propiedades de los cuerpos. Un cuerpo es una entidad matemática para la cual la adición, sustracción, multiplicación y división están bien definidas. Contenido 1 Historia 2… …   Wikipedia Español

  • Función zeta de Riemann — ζ(s) en el plano complejo. El color de un punto s codifica el valor de ζ(s): Colores fuertes denotan valores cercanos a 0 y el tono codifica el valor del argumento. El punto blanco en s=1 es el polo de la función zeta; los puntos negros en el eje …   Wikipedia Español

  • Función monótona — En matemáticas, una función entre conjuntos ordenados se dice monótona (o isótona) si conserva el orden dado. Las funciones de tal clase surgieron primeramente en cálculo, y fueron luego generalizadas al entorno más abstracto de la teoría del… …   Wikipedia Español

  • John von Neumann — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”