- Norma Granada
-
Norma Granada
La llamada norma granada es un sistema de valoración de arbolado, especialmente pensado para los árboles y arbustos ornamentales. Fue auspiciada por la Asociación Española de Parques y Jardines Públicos y editada en el año 1990. La primera revisión fue publicada en 1999 y una segunda en 2006. Es ampliamente utilizada en España e Iberoamérica, debido a su gran prestigio.
Éste método de valoración trata de objetivar al máximo tanto los elementos y factores tomados del mercado como los medidos en la realidad, proyectando en el tiempo los datos y funciones tamaño-precio que se obtienen. Es capaz de distinguir también entre la valoración de árboles considerados como sustituibles y aquellos que no son sustituibles, fijando así mismo tres grandes grupos de intervención con ciertas particularidades intrínsecas: frondosas, coníferas y palmeras.
Según la informació publicada en el Boletín Oficial de la Comunidad de Madrid (BOCM)de 12 de diciembre de 1991, esta norma se justifica de la siguiente manera:
NORMA GRANADA - JUSTIFICACIÓN DEL MÉTODO
A. ANTECEDENTES
1. Consideraciones generales sobre la valoración del arbolado.
Una de las especificidades de esta valoración que analizamos es que no se trata de las habituales en una economía de competencia. No existe demanda ni oferta en términos de mercado, ni tampoco comprador ni vendedor; por lo tanto, no se puede buscar precio, que es un dato histórico, fruto de una compraventa, sino un valor. No se valora aquí un proceso de explotación, ni un bien productivo de transformación o de consumo.
Por lo tanto, la valoración de árboles de interés paísajístico debe aspirar a reflejar una función de utilidad de contenido económico, pero a través de cierto equilibrio entre los procedimientos estrictamente econométricos y las componentes de significación simbólica, paísajística, histórica, estética o de bienestar, que son valores de afección que completan el cuadro.
La valoración pretende brindar una solución cifrada y un apoyo objetivo a las decisiones o al análisis de cualquiera de los siguientes supuestos en los que aparece arbolado de interés paísajístico, tanto en órbita pública como privada:
- Expropiación, afección a arbolado de terceros por actividad de planeamiento de la Administración. - Estimación de repercusión de catástrofes, incendios, inundaciones. - Daños a bienes municipales, concepto de valoración de daños por obras en vía pública, redes de servicio, accidentes de tráfico y vandalismo. Fianzas e indemnizaciones por infracciones. - Análisis presupuestario o financiero de la actividad pública. - Catastro, inventario o catálogo. - Trasplantes. - Seguros. - Regulación mediante Ordenanzas y Normas Urbanísticas. - Tasas urbanísticas. Garantía hipotecaria. Compraventa. - Consideraciones de impacto ambiental, evaluación económica.
Existen distintos procedimientos de valoración, traducidos y adaptados de Alemania, Australia, Bélgica, Francia, Finlandia, Italia, Reino Unido, Suiza, USA y algunas normas españolas prestigiosas y en vigor.Las razones que avalan la búsqueda de un nuevo método son:
- Falta de actualización en algunas de ellas. La actualización simplemente monetaria no es satisfactoria, ni acorde con la realidad. - Omisión de bloques de vegetación, carencia o lagunas en el repertorio (arbolado mediterráneo, tropical y palmeras). - Fórmulas proporcionales, con valor unitario fijo en cada tramo. - Fórmulas empíricas, polinómicas, de conversión económica discutible y difícil justificación.
Al mismo tiempo, la inevitable componente subjetiva del tasador se sintetiza en un criterio de fundamento estadístico que postula que la valoración más correcta es aquella a la que corresponde una probabilidad más alta para los datos de mercado de que disponemos, y siendo el mismo siempre concurrente. Presumiblemente en tal valor coincidirán, por tanto, diferentes tasadores y según este principio, en el hipotético caso de varios tasadores, el valor objetivo sería la moda (valor de mayor frecuencia) de los valores subjetivos.
B. PRESENTACIÓN DEL MÉTODOEl método de valoración que se propone con la presente Norma de Granada se basa en los siguientes elementos:
- Objetivación máxima de los elementos y factores tomados del mercado o medidos en la realidad; proyección en el tiempo de los datos y funciones tamaño-precio obtenidos, tanto para supuestos de mayor envergadura del árbol, como para actualización automática, sin más que utilizar al día la información del sector.
Se distingue entre árboles sustituibles, que son aquellos que se pueden comprar y replantar, y los no sustituibles, que son los que no es posible conseguir en el mercado de los viveros ornamentales. Se precisará algo más la noción de sustituible, pero como referencia, en las frondosas la frontera está a partir de los 30 cm. de circunferencia.
Se fijan tres grandes grupos de intervención con variaciones en el procedimiento de valoración:
a) Frondosas. b) Coníferas. c) Palmeras y similares.
A lo largo de la descripción del método, se utilizarán algunos conceptos que se referencian a continuación:
Calibre característico. Tamaño del árbol cuyo precio medio en vivero va a servir como base de la valoración. Va referido, por tanto, a un precio de catálogo, y se fija en un perímetro de 10-12 cm. para las frondosas (tomado a 1,30 m. sobre el nivel del suelo), y en una altura de 100-125 cm. para las coníferas.
Valor básico. Llamado también valor standard o tipo. Tiene un carácter objetivo, por obtenerse de las ecuaciones o funciones tamaño precio, y se da en términos monetarios. Es un punto de partida mínimo, con el que se puede continuar el proceso de valoración.
Si el árbol está vivo, ya tiene un valor mínimo, el valor básico.
Las circunstancias de estado, singularidad, sanidad, etc., sólo pueden considerarse para aumentar, nunca reducirán el valor básico.
Valor de reposición. Es realmente un valor de compra (más los costos de trasplante y de mantenimiento, actualizados).
B.1. VALORACIÓN PARA ÁRBOLES SUSTITUIBLES.
Para los árboles sustituibles, se buscaría el precio de compra del árbol en cuestión en los catálogos de viveros ornamentales, o bien se buscaría en la curva o función de regresión correspondiente al grupo de especies de similar comportamiento. Una vez obtenido el precio de mercado, se le sumarían los gastos de plantación y arranque y los gastos anuales de mantenimiento, capitalizados con interés compuesto durante el tiempo que ha vivido el árbol. Se ha considerado la probabilidad de éxito en el trasplante (riesgo del trasplante).
La fórmula más general sería, de acuerdo con Caballer:
Valor Básico = (1+r)t + (Ccn+1)(1+r) t + (Ccn+2)(1+r)t-1+....+ + (Cct-1)(1+r) + Cct
Donde:
n = año de plantación. Pm = precio de mercado para un calibre (y edad determinado). Ct = Coste de arranque y plantación.
= Probabilidad de éxito en trasplante (0 1).
t = Edad del árbol arrancado (año de la valoración). Cc = Costes de cultivo y mantenimiento el año n+1.
La introducción de Ct y de a permite fijar el límite de los árboles sustituibles (Ct no excesivo, igual que Pm y Ct alto) y también sitúa los árboles históricos con Pm y Ct altísimo, y a tendiendo a cero, con los que Vb tendería a infinito.
Si se supone que los costes de cultivo y mantenimiento son iguales todos los años, la fórmula queda así:
Vp= (1+r)t-n] + Cc
B.2. VALORACIÓN PARA ÁRBOLES NO SUSTITUIBLES. FRONDOSAS Y CONÍFERAS.
Para llegar a la formulación objetiva del valor básico, la Comisión de Valoración centró su trabajo en el estudio de la posibilidad de encontrar una cierta función «f» cuya variable dependiente fuese el valor básico (o el precio) en términos monetarios.
Existe, para ello, dos supuestos de partida:
1. No es posible hallar una ecuación en la que intervengan variables territoriales, culturales o cualitativas del árbol (singularidad, rareza, etc.). Hay que buscar, por lo tanto, «un valor básico», como punto de partida, y dejar estas variables mencionadas para una segunda etapa, la de los índices correctores.
2. Hay que utilizar variables cuantitativas, medibles, significativas, y en el menor número posible.
Ya desde el principio se pensó que un camino válido era la pauta de precios existentes en el mercado de árboles (viveros ornamentales) en función de los valores de circunferencia para las frondosas, y de altura para las coníferas.
Hay que definir una función circunferencia-precio o altura- precio, de modo que la simple medición pueda traducirse inmediatamente en valor. El procedimiento es obtener por regresión las funciones, con el ajuste que da el conocimiento profesional de los especialistas, fácilmente convergente.
Para los árboles no sustituibles habría que suponer que la función de regresión o ley, conocida en el tramo en que hay precios de compra en los viveros comerciales, se mantiene y se traslada fuera de dicho tramo y, por lo tanto, para obtener el valor básico podemos extrapolar como si tuviera el precio virtual que nos da la curva para el tamaño real observado (Figura III).
Se han fijado nueve grupos para las frondosas, de acuerdo con la información manejada, y seis grupos para las coníferas. Como se aprecia en las tablas I y II, dichos grupos se han formado atendiendo al hábito de crecimiento y a la expectativa de longevidad de cada árbol (mayor información en Anejos).
Se han probado varios modelos de regresión: lineal, multiplicativo, exponencial y logarítmico, con buenos resultados de precisión estadística. Pero al proyectar la regresión fuera del ámbito habitual de los datos de precios en vivero, se descartaron finalmente todos ellos.
Posteriormente, el comportamiento de crecimiento del árbol en sí ha conducido a una regresión que presenta un ajuste muy preciso para el caso propuesto.
La sigmoide o función de Richards, de fructífera tradición en el análisis de los fenómenos biológicos, y su caso particular la ecuación o función logística, se acomoda muy bien al modo de comportamiento del árbol en su evolución; a semejanza de lo que ocurre con éste, la función logística presenta un punto de inflexión, a partir del cual comienza a disminuir el crecimiento relativo, y tiende asintóticamente a un valor máximo.
La ecuación es y =
Donde «v» es un coeficiente que después de estudios detenidos, se ha fijado en 0,01 para todos los grupos.
«k» es el valor máximo, el parámetro más independiente del comportamiento del árbol, y al que tiende asintóticamente la curva. Es el multiplicador máximo del precio estándar en vivero para un calibre característico (tamaño 10-12 cm. de circunferencia en frondosas, y 100-125 cm. de altura en coníferas). Se han tomado tres valores de k, que cambia con la longevidad de las especies: 1.000, 750 y 500 (ver Tabla III).
«xi» representa el punto de inflexión, que también cambia según la longevidad y el hábito de crecimiento; «b» es un parámetro para el precio de partida. (Ver valores de ambos en Tabla III).
Así, el valor básico «y» es un multiplicador del precio que tendría el árbol en vivero a los calibres característicos. Este valor se da tabulado para las 15 ecuaciones que han resultado, en las Tablas IV y V, con valores cada 5 cm. para el perímetro en frondosas, y cada 50 cm. de altura para las coníferas.
Por lo tanto, para obtener el valor básico de un determinado árbol, se situaría a través de las Tablas I y II en el grupo que corresponda. Con la medición de su circunferencia de tronco (frondosas) o de la altura del árbol (coníferas), se pasaría a la Tabla III para usar las fórmulas o a las Tablas IV y V para localizar directamente el multiplicador «y».
Con las gráficas I, II y III se puede obtener igualmente el factor multiplicador «y», aunque ya se sabe que será con menos precisión este procedimiento gráfico que usando las ecuaciones o los valores tabulados. De ambos modos se llega al valor básico, «Vb», por tablas o por gráficas.
B.3. VALORACIÓN PARA ÁRBOLES NO SUSTITUIBLES. PALMERAS Y SIMILARES.
La distinta configuración morfológica de las palmeras, su sensible diferencia fisiológica respecto a los árboles frondosos y coníferas, hace tener presentes, a la hora de establecer un método de valoración objetivo, ciertos elementos de diferenciación:
- Sus variados y a la vez anárquicos modos de presentación, venta y expedición. - La escasa representatividad de viveros especializados, en comparación con el resto del conjunto de viveros ornamentales.
Por todo ello, es difícil la obtención de más datos fiables y con evolución conocida que nos permita realizar una curva de regresión, que proporcione un valor básico de arranque, susceptible de aplicarse en la fórmula final de valoración. Se sigue optando, por lo tanto, por una fórmula empírica.
El coste característico representaría en estos especímenes el precio medio teórico de mercado de ese individuo para el mínimo tamaño comercial (habitualmente posible) que se debe revisar y actualizar periódicamente.
Se adopta el término h/k como mejor expresión de la edad, donde h = altura en cm. del tronco y k = constante de crecimiento (Tabla VI). Así pues, se patentiza en este cociente h/k la relación entre la altura del ejemplar (en cm), como resultante de la edad del mismo y su respuesta fisiológica. En la fórmula final aparecería este cociente elevado al cuadrado por la gran importancia del mismo en el cómputo del valor final.
Así pues, la fórmula quedaría como sigue:
básico = característico X
Los índices correctores ponderarían igual que en las frondosas y coníferas. Las mismas consideraciones expuestas antes, en cuanto a los árboles sustituibles y no sustituibles.
B.4. ÍNDICES CORRECTORES.
A partir de disponer del valor básico, entran en juego unos índices correctores que se agrupan en dos bloques:
Factores intrínsecos (propios de la especie y del individuo) 1. Tamaño fotosintéticamente activo (Volumen y superficie de copa), por comparación con la copa hipotéticamente ideal para su tamaño y edad 2. Estado sanitario. Referencia al vigor o grado de decrepitud, presencia de alteraciones sanitarias, ataques de parásitos, podredumbres, etc 3. Expectativa de vida útil. Es la supuesta por el tasador, con relación a los dos valores tabulados, de vida ornamental y de vida total máxima esperada Factores extrínsecos (correspondiendo al medio que le rodea) 1. Estético y funcional. Apreciación del interés estético del árbol, como parte de una alineación o grupo, y de su papel funcional (cortavientos, pantalla visual o sonora, acompañamiento de sombra) 2. Representatividad y rareza. Indice relativo a consideraciones de mayor o menor abundancia en la zona, y aprecio o cualidades históricas, culturales o simbólicas del ejemplar 3. Situación. Índice relativo del interés del árbol en el entorno que le rodea, y su contribución a la mejora ambiental, plástica o urbana 4. Factores extraordinarios. Referencia a otros valores o parámetros que merezcan tal consideración
La fórmula de aplicación de los índices descritos sería:
Vf = Vb
Donde:
Vf = Valor final Vb = Valor básico
Ii = Sumatorio de los índices de factores intrínsecos Ie = Sumatorio de los índices de factores extrínsecos
La escala de valores de los índices se recoge en la Tabla VII.
B.5. TRONCOS MÚLTIPLES.
Para el caso de árboles con troncos múltiples, si se puede descubrir el cuello del árbol, medir el perímetro envolvente inmediatamente por encima del cuello, que sería el valor de circunferencia con el que se entra en las ecuaciones o curvas de regresión.
Si el árbol tiene fuerte engrosamiento en el cuello o no se puede descubrir éste, tomar las circunferencias de todos los troncos que existan, a una altura de 80 cm. del suelo, y tomar como perímetro virtual el de una circunferencia que circunscriba como envolvente todas las de los troncos existentes, tangentes entre sí (figura IV).
B.6. DAÑOS PARCIALES.
Cuando se analizan los daños parciales de un árbol, en muchas ocasiones no es cuestión de valoración, sino de considerar la especie y la estación del año, elementos fundamentales a la hora de estimar si los daños parciales son de consideración para el ejemplar o no.
En este caso de daños parciales, por desgracia muy habitual en el medio urbano, puede tratarse de una situación en la que lo procedente para el técnico no sea emitir una valoración, sino un informe en cuanto al riesgo de supervivencia, riesgo de estabilidad, seguridad para el peatón y tráfico, medidas de restauración y de actuación en consecuencia.
Se reproduce el texto aparecido en su día en el método ya clásico publicado por Icona en 1975, que sigue teniendo perfecta validez, para el cálculo de la valoración referente a daños parciales.
El valor de los daños que se causen a un árbol se cifrará en un tanto por ciento del valor total de éste, calculado con las anteriores normas. Al causar daños a un árbol en cualquiera de sus partes, éste pierde valor en sus cualidades estéticas, sanitarias, etc., y esta pérdida debe ser compensada por medio de una indemnización.
Los daños se clasificarán según sean: heridas en el tronco, desgajamiento de ramas o destrucción de raíces.
El cálculo de las indemnizaciones a que haya lugar por estas tres causas se hará separadamente, sumando luego los porcentajes obtenidos para obtener el valor total de la indemnización. Si este total resultara mayor del 100%, se tomará, lógicamente, el valor total del árbol.
B.6.1. Heridas en el tronco.
Cuando se causan heridas en el tronco de un árbol, se destruye muchas veces la capa viva de éste, lo que ocasiona un déficit en la aportación de savia a la copa, con la consiguiente pérdida de vigor. Estas heridas, sobre todo si son anchas, cicatrizan muy lentamente, dando lugar a deformaciones del tronco, por lo que se ocasiona también una pérdida en su valor estético. Por último, las heridas en el tronco suponen un gran peligro para la vida del árbol, por ser un foco de infección y facilitar el ataque de los parásitos.
La extensión del daño se mide en anchura, proyectando sus extremos más separados sobre la circunferencia que pasa por el punto más alto de la herida. La proyección P se expresa como fracción de la circunferencia citada C y se multiplica por la altura h de la herida en milímetros (figura V).
I % = (h+50) I se considera igual a 100 cuando tome valores superiores a 50%.
En esta expresión, P y C vienen dadas en las mismas unidades y su cociente P/C evalúa la fracción de la circunferencia que ha sido afectada por la herida, lo que da una idea de la magnitud del daño causado.
Este cociente se multiplica por (50+h), siendo «h» la altura de la herida, expresada en milímetros, con lo que se introduce en la valoración la magnitud de la superficie dañada; cuanto mayor sea esta superficie, mayor será la dificultad de cicatrización, con la siguiente pérdida de vigor y merma en su valor estético. Por otra parte, el peligro de infecciones que puedan afectar al árbol, penetrando por la herida, es tanto mayor cuanto más grande sea ésta, que, siendo P constante, es proporcional a «h».
Cuando el daño causado sea lineal, como el ocasionado por amarre de cables a los troncos de los árboles, las heridas causadas tienen una superficie muy pequeña, lo que daría lugar a indemnizaciones muy bajas, siendo el daño causado muy grande. Para evitar esta discordancia entre daños e indemnización, se ha dotado al segundo factor de un sumando «50» que nos da el valor mínimo de la indemnización cuando sea muy pequeña la altura de la herida.
Cuando la herida lineal afecte a toda la circunferencia del árbol, la indemnización ha de ser el valor total del árbol, pues esta herida, al destruir la capa viva o cambium en toda su anchura, provoca un cese en el suministro de savia a la copa que puede provocar la muerte de éste.
En este caso el daño causado será:
I % = (50+h);
si P = C, =1, h 0 y entonces I % >50%
y esta cifra corresponde al 100% de indemnización, según la tabla de valores VIII.
B.6.2. Pérdidas de ramas.
La pérdida de ramas en la copa de un árbol supone una disminución tanto de su valor estético como de su vigor.
Esta pérdida de su valor está en relación con la cantidad de ramas que sean destruidas. Se medirá en tanto por ciento del volumen inicial de la copa. Si la destrucción de las ramas afectara a más del 80% de ellas, el valor de la indemnización será el del total del árbol.
Cuando la destrucción suponga un desequilibrio en la copa del árbol, se incluirá también para el cálculo de la indemnización el volumen de copa que sea preciso quitar para lograr otra vez el equilibrio, y el costo de ello.
B.6.3. Destrucción de raíces.
La destrucción de raíces da lugar a una disminución en la aportación de nutrientes y, por tanto, a una pérdida de vigor que puede llegar a ocasionar la muerte del árbol. También puede representar peligro de descalce del árbol, en caso de fuertes vientos.
Para calcular el tanto por ciento que suponen las raíces destruidas sobre el conjunto del sistema radical, se toma como extensión de éste la de la proyección de la copa del árbol y como profundidad, un metro.
Se debe aplicar este criterio en caso de zanjas que pasen cerca del árbol, o incluso en caso de un trasplante de éste.
B.6.4. Otros daños.
Los daños no mencionados expresamente en los párrafos anteriores como los ocasionados por sacudidas, separación de la vertical, corte de yema terminal u otros cualesquiera, se valorarán estimando la repercusión que puedan tener en la vida futura del árbol, y en su clasificación dentro de los distintos índices.
Las consideraciones anteriores se han sistematizado en la tabla de valores VIII:
A un 50% en la raíz corresponderá una indemnización del 60% del valor del árbol; si, además, se diera un 30% de daños en la copa, habría que sumar un 20% más a la indemnización anterior, que quedaría en 60+20=80%.
EJEMPLOS
SUSTITUIBLE
Hay que arrancar una Robinia de 15 años, y 60 cm. perímetro.
1. Robinia pseudacacia «umbraculifera», 20-25 cm. perímetro en vivero.
Precio en vivero 4.200 ptas. = Pm (n = 4 años) Ct (coste plantación) 3.000 ptas. Cc (coste cultivo anual 5.500 ptas./año
α (% éxito transplante) 80%
r = 14%
Vb = (1+r)t + Cc
Vb= (1,14)15+5.500 = 64.241 + 149.989 = 214.230 Ptas.
NO SUSTITUIBLE
FRONDOSA
1 Robinia pseudacacia de 160 cm. perímetro.
1º) Frondosa. 2º) Tabla I, Crecimiento Medio, Longeva, Tipo H. 3º) Tabla IV, para x =160, tipo H, y = 616. En figuras III, y = 620. 4º) Valor característico para perímetro 10-12, 735 ptas. Valor básico = 735 x 616 = 452.760 ptas. 5º) Factores intrínsecos y extrínsecos máximos y mínimos (Tabla VII).
Ii excelentes = 0,5 + 0,5 + 0,5 = 1,5
Poco = 0,1 + 0,1 + 0,1 = 0,3
Ie excelentes = 0,25 + 0,25 + 0,25 = 1
Poco = 0,05 + 0,05 + 0,05 + 0,05 = 0,20 6º) Valor final=Vb (1+ Ii + Ie) 452.760 (1+1,5+1)=1.584.660 Máximo 452.760 (1+0,3+0,20)=679.140 Mínimo
Fórmula econométrica. Relación edad-tamaño.
Perímetro= -83,725 + 131,72 log t... log t =
T = antilog 1,8503 t = 70,8 años Vf = Vo(1+r)n = 735(1+r)70,8 =7.855.083(14%) =2.243.485(12%) =626.454(10%)
CONIFERA
1 Pino piñonero, 150 cm. perímetro, 18 m. altura.
1º) Conífera. 2º) Tabla II, Crecimiento medio, longeva, tipo E. 3º) Tabla V, para x =18 y Tipo E, y = 680. Gráfico Fig.I bis y II bis, sale igual. 4º) Valor característico para altura 100-125 cm. Maceta = 800 ptas. 5º) Valor básico Vb = 800 x 680 = 544.000 ptas. 6º) Factores intrínsecos y extrínsecos máximos y mínimos (Tabla VII).
Ii 1,5 Máximo 0,3 Mínimo Ie 1 Máximo 0,20 Mínimo
Valor final. Vf=544.000 (1+1,5+1)=1.904.000 Máximo Vf=544.000 (1+0,3+0,20)=816.000 Mínimo
PALMERA
1 Phoenix dactylifera, de diámetro 0,15 y altura 6 m = 600 cm., de unos 50 años.
1º) Ver en tabla VI el grupo, valor característico y cte., de crecimiento.
Valor característico.................................175 ptas. K....................................................25 Valor básico = Valor característico x ( =175k = 175 x 576
3°) Valor final=Valor básico(1+ Ii + Ie)= 175 x 675 x (3,5) = 352.800 ptas. Máximo. 175 x 576 x (1,5) = 151.200 ptas. Máximo.
Categoría: Jardinería
Wikimedia foundation. 2010.