- Punto (geometría)
-
Punto (geometría)
El punto, en geometría, es uno de los entes fundamentales, junto con la recta y el plano. Son considerados conceptos primarios, o sea, que sólo es posible describirlos en relación a otros elementos similares. Se suelen describir apoyándose en los postulados característicos, que determinan las relaciones entre los entes geométricos fundamentales.
El punto es un elemento geométrico adimensional, no es un objeto físico; describe una posición en el espacio, determinada en función de un sistema de coordenadas preestablecido.
Contenido
artista
Esa cuestión fue analizada por A. N. Whitehead en Una investigación sobre los principios naturales de conocimiento (An Inquiry Concerning the Principles of Natural Knowledge), y El concepto de la Naturaleza (The concept of Nature). En estos libros se expone la «relación de inclusión». En Proceso y Realidad (Process and Reality), Whitehead propone un nuevo enfoque basado en la «relación de conexión» topológica. También H. J. Schmidt plantea una visión totalmente distinta del punto geométrico.[1]
trayectoria
Suele representarse con una pequeña "equis" (x), una cruz (+), un círculo (o), un cuadrado o un triángulo. En relación a otras figuras, suele representarse con un pequeño segmento perpendicular cuando pertenece a una recta, semirrecta o segmento. A los puntos se les suele nombrar con una letra mayúscula: A, B, C, etc.
artesanias
Un punto puede determinarse con diversos sistemas de referencia:
En el sistema de coordenadas cartesianas, se determina mediante las distacias ortogonales a los ejes principales, que se indican con dos letras o números: (x, y) en el plano; y con tres en el espacio (x, y, z).
En coordenadas polares, mediante su distancia al centro y la medida angular respecto del eje de referencia: (r, θ).
En coordenadas esféricas, mediante su distancia al centro y la medida angular respecto de los ejes de referencia: (r, θ, φ)
En coordenadas cilíndricas, mediante coordenadas radial, acimutal y altura: (ρ, φ, z).
También se pueden emplear sistemas de coordenadas elípticas, parabólicas, esferoidales, toridales, etc.
Algunos postulados relacionados con el punto
- Por un punto pasan infinitas rectas y planos.
- Dos puntos determinan una recta y sólo una.
- Tres puntos no alineados determinan un plano y sólo uno.
- Una recta contiene infinitos puntos.
- Un plano contiene infinitos puntos e infinitas rectas.
- El espacio contiene infinitos puntos, rectas y planos.
Estos postulados se pueden generalizar para espacios de n dimensiones.
mira tambien
Referencias
- Notas
- ↑ Point-free geometry en planetmath.org.
Enlaces externos
- Wikimedia Commons alberga contenido multimedia sobre punto.
- Weisstein, Eric W. Point from MathWorld
- Point-free geometry, en planetmath.org
Categorías: Geometría elemental | Sistemas de coordenadas
Wikimedia foundation. 2010.