- Secuencias Barker
-
Las secuencias o códigos Barker del tipo binario están compuestas por una sucesión de –1’s y +1’s de una longitud finita L, tal que su función de autocorrelación cumple que | C[i] | = < 1 para i≠0. Estas secuencias pueden ampliarse al campo complejo si cada uno de los términos de la misma son números complejos con un módulo igual a 1 [Golomb,1965]. En la tabla se resumen las secuencias Barker binarias conocidas y sus correspondientes secuencias complejas (denominadas “cuaternarias” debido a que utilizan cuatro símbolos: ±1 y ±i). Por los resultados obtenidos por [Turyn,1961] y citados en [Golomb,1965], se deduce que no existen más secuencias Barker binarias de longitud impar, mientras que la existencia de secuencias Barker binarias de longitud par mayores que 4 es altamente improbable.
k Secuencia Barker Binaria Secuencia Barker Cuaternaria 1 +1 +1 2 +1 +1 +1 +i 3 +1 +1 -1 +1 +i +1 4 +1 +1 +1 -1 +1 +i -1 +i 5 +1 +1 +1 -1 +1 +1 +i -1 +i +1 7 +1 +1 +1 -1 -1 +1 -1 +1 +i -1 +i -1 +i +1 11 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 +1 +i -1 +i -1 -i -1 +i -1 +i +1 13 +1 +1 +1 +1 +1 -1 -1 +1 +1 -1 +1 -1 +1 +1 +i -1 -i +1 -i +1 -i +1 -i -1 +i +1
La limitación en la longitud de la secuencias Barker binarias es un obstáculo para conseguir mejores relaciones S/N. La relación de amplitud entre el pico de la correlación y los lóbulos laterales es directamente proporcional a la longitud de la secuencia. Los lóbulos laterales de las secuencias Barker tienen una amplitud ±1 (esto es parte de las condiciones [Turyn, 1961] [Golomb, 1965]) y los picos principales tienen una amplitud igual a la longitud de la secuencia. La relación entre estos picos y los lóbulos laterales es proporcional a la relación S/N con la que pueden detectarse las secuencias por medio de la correlación. Al no existir secuencias de más de 13 bits, la posibilidad de trabajar con bajas relaciones S/N está limitada. Por último, es conveniente aclarar que con los códigos Barker no se pueden realizar multiemisiones, a menos que se utilicen frecuencias diferentes. Estas secuencias se han usado ampliamente en sistemas de radar y sonar, tanto en espacios externos como en espacios internos.Aplicaciones
- Comunicaciones
- Robótica ([Audenaert, 1992] [Ureña, 1998])
- Sistemas Radar/Sonar
- Sistemas de detección ferroviarios ([Ureña, 2001])
Referencias
- Golomb, S.W. and Scholtz, R.A. (October 1965). «Generalized Barker Sequences». IEEE Trans. Information Theory IT-11: pp. 533–537.
- Turyn, R., Storer, J. (1961). «On Binary Sequences». Proceedings of American Mathematical Society (AMS) 12: pp. 394-399.
Categoría:- Telecomunicaciones
Wikimedia foundation. 2010.