- Sumación de Cesàro
-
En el campo del análisis matemático, la sumación de Cesàro es un método alternativo de asignarle una suma a una serie infinita. Si la serie converge en la forma usual a una suma α, entonces la serie es sumable Cesàro y posee una suma de Cesàro α. La relevancia de la sumación de Cesàro es que es posible que una serie que diverge tenga una suma de Cesàro.
La sumación de Cesàro fue inventada por el analista italiano Ernesto Cesàro (1859-1906).
Contenido
Definición
Sea {an} una sucesión, siendo
la suma k–ésima de los primeros k términos de la serie
- .
La sucesión {an} se denomina sumable Cesàro, con una suma de Cesàro α, si
- .
Ejemplos
Sea an = (-1)n+1 para n ≥ 1. Es decir, {an} es la sucesión
- .
Entonces la sucesión de sumas parciales {sn} es
- ,
así que la serie, conocida como serie de Grandi, claramente no converge. Por otro lado, los términos de la secuencia {(s1 + ... + sn)/n} son
- ,
así que
- .
Por tanto, la suma de Cesàro de la sucesión {an} es 1/2.
Generalizaciones
En 1890, Ernesto Cesàro mencionó una familia más amplia de métodos de sumación desde entonces llamada (C, n) para enteros no-negativos n. El método (C, 0) es la suma ordinaria, y (C, 1) es la sumación de Cesàro tal como está descrita más arriba.
Los métodos de orden superior son descritos como sigue: Dada una serie Σan, sean las cantidades
y sea Enα = Anα para la serie 1 + 0 + 0 + 0 + · · ·. Entonces la suma (C, α) de Σan es
en caso de existir.[1]
Véase también
- Media de Cesàro
- Media de Riesz
- Sumación de Abel
- Sumación de Borel
- Sucesiones divergentes
Notas
- ↑ Shawyer and Watson pp.16-17
Referencias
Shawyer, Bruce and Bruce Watson (1994). Borel's Methods of Summability: Theory and Applications. Oscford UP. ISBN 0-19-853585-6.
Categorías:- Análisis matemático
- Series matemáticas
Wikimedia foundation. 2010.