- Teselación
-
Teselación
Una teselación es una regularidad o patrón de figuras que cubre o pavimenta completamente una superficie plana que cumple con dos requisitos:
- que no queden huecos
- que no se superpongan las figuras
Las teselaciones se crean usando transformaciones isométricas sobre una figura inicial.
Distintas culturas en el tiempo han utilizado esta técnica para formar pavimentos o muros de mosaicos en catedrales y palacios.
Contenido
Antecedentes históricos
- Algunos mosaicos sumerios con varios miles de años de antigüedad contienen regularidades geométricas.
- Arquímedes en el siglo III a. de C. hizo un estudio acerca de los polígonos regulares que pueden cubrir el plano.
- Johannes Kepler, astrónomo alemán, estudió los polígonos regulares que pueden cubrir el plano, en su obra “Harmonice mundi” de 1619. Además realizó estudios en tres dimensiones de los llamados sólidos platónicos.
- Entre 1869 y 1891, el matemático Camille Jordan y el cristalógrafo Evgenii Konstantinovitch Fiodorov estudiaron completamente las simetrías del plano, iniciando así el estudio sistemático y profundo de las llamadas teselaciones.
- Un personaje clave en este tema es el artista holandés M. C. Escher (1898-1972) quien, por sugerencia de su amigo el matemático H. S. M. Coxeter, aprendió las teselaciones hiperbólicas, lo que motivó su interés por el palacio de La Alhambra en Granada. Legó un sinnúmero de bellas, curiosas y misteriosas obras de arte.
Conceptos previos
- En una teselación plana la suma de todos los ángulos que concurren a un vértice es 360º.
- Un polígono es regular si tiene todos sus lados y ángulos iguales.
- Un polígono es convexo si todas sus diagonales están en el interior del polígono.
- Un polígono es cóncavo si no es cnvexo
Teselaciones regulares
Los únicos polígonos regulares que cubren completamente una superficie plana son: el triángulo equilátero, el cuadrado y el hexágono.
Como la unión en cada vértice debe sumar 360º para que no queden espacios, los únicos polígonos regulares que suman 360 al unirlos por sus ángulos, interiores son estos tres.
Teselaciones semi-regulares.
Son aquellas que contienen 2 o más polígonos regulares en su formación. Una teselación semi-regular tiene las siguientes propiedades:
- Esta formada sólo por polígonos regulares.
- El arreglo de polígonos es idéntico en cada vértice.
- Existen sólo 8 teselaciones semi-regulares
Teselaciones con figuras semi-regulares
Teselaciones no regulares
Son aquellas formadas por polígonos no regulares
Cuadriláteros
Cualquier paralelogramo tesela, ya que solo debemos prolongar sus lados paralelos y construir los nuevos paralelogramos congruentes al primero.
Con cualquier cuadrilátero, ya sea cóncavo o convexo, es posible cubrir una superficie plana. En el caso Cóncavo es fácil de demostrar por el Teorema de Varignon, que los puntos medios de todo cuadrilátero forman un paralelogramo y luego Tesela. Este método se llama Método de la Malla Invisible
Triángulos
Con un triángulo escaleno es posible cubrir todo el plano. Esto se verifica formando el paralelogramo correspondiente.
Hexágonos
Teselación de El Cairo
Esta teselación aparece frecuentemente en las calles de El Cairo, Egipto y en el arte islámico, de ahí su nombre.
El pentágono posee sus 5 lados de la misma medida. Tiene dos ángulos rectos, un ángulo de aproximadamente 131,5° y dos ángulos de 114,25°.Como para todo pentágono, la suma de sus ángulos es de 540°.
Polígonos Cóncavos
los pligonos concavos son los que sus angulos interiores miden mas de 180 grados
Construcción de teselas
Método quita y pon
Consiste en dibujar una figura geométrica que por si sola tesele el plano, como un paralelogramo o un triángulo. Luego, se le van sacando partes de un lado, para luego ponerlas en el lado contrario. Luego se repite esta imagen n veces y se van colocando de modo que encajen perfectamente, utlizando las transformaciones isométricas (traslación, rotación y simetría). Escher se hizo famoso por sus cuadros de teselaciones construidos con este método.
Teselaciones e isometría
A partir de los movimientos o transformaciones en el plano se pueden lograr diversos diseños.
Véase también
- Maurits Cornelis Escher
- Polígonos de Thiessen
- Teselación de El Cairo
- Teselación de Penrose
- Transformaciones isométricas
Enlaces externos
Categoría: Simetría
Wikimedia foundation. 2010.