- Vector axial
-
Un vector axial o pseudovector es una magnitud física que presenta propiedades de covariancia o transformación bajo reflexiones anómala, presentando violaciones aparentes de la paridad física.
Algunos ejemplos de vectores axiales son el momento angular, el momento de una fuerza, la velocidad angular y el campo magnético.
Descripción
La explicación de este extraño comportamiento es que realmente no cualquier 3-tupla de componentes forma un vector físico. En particular, cualquier magnitud física definida mediante el producto vectorial de dos vectores físicos genuinos es un vector axial o pseudovector. Las componentes de un vector axial
tridimensional admiten ser expresadas como:
ai = ∑ εijkbjck j,k Donde:
es el símbolo de Levi-Civita, totalmente antisimétrico.
es un vector ordinario no-axial.
es un vector ordinario no-axial.
En mecánica relativista los vectores axiales son tratados como la parte espacial de un tensor antisimétrico. Más concretamente un vector axial resulta ser la parte espacial del dual de Hodge del correspondiente tensor antisimétrico.
Transformación de los vectores bajo reflexión
Bajo una operación de reflexión un vector axial cambia de signo, A diferencia de un vector ordinario en que sólo cambia de signo la componente perpendicular al plano de reflexión considerado. Así la imagen especular de una rueda girando se ve girar en el espejo según un eje paralelo al de la rueda original y con sentido de rotación contrario, por tanto la velocidad angular aparente de la imagen especular es igual y de sentido contrario a la rueda original.
Ejemplos
- El momento angular y el par de una fuerza de la mecáncia newtoniana son vectores axiales.
- El campo magnético se trata como un vector axial en electromagnetismo clásico.
Categorías:- Magnitudes físicas
- Cálculo vectorial
- Vectores
Wikimedia foundation. 2010.