Geometría ordenada

Geometría ordenada

La geometría ordenada es un tipo de geometría que presenta el concepto de intermediación pero, como la geometría proyectiva, omitiendo la noción básica de medición. La geometría ordenada es una geometría básica que forma un marco de trabajo común para las geometrías afín, euclidiana, absoluta e hiperbólica (pero no la geometría proyectiva).

Contenido

Historia

Moritz Pasch fue el primero en definir una geometría sin referencia a la medición en 1882. Sus axiomas fueron mejorados por Peano (1889), Hilbert (1899) y Veblen (1904).[1] Euclides anticipó la aproximación de Pasch en la definición 4 de Los Elementos: "una línea recta es aquella que pasa por igual por todos sus puntos".[2]

Conceptos primitivos

Las únicas nociones primitivas en la geometría ordenada son los puntos A, B, C, ... y la relación de intermediación [ABC], que puede leerse como "B está entre A y C".

Definiciones

El segmento AB es el conjunto de puntos P tal que [APB].

El intervalo AB es el segmento AB y sus extremos A y B.

El rayo A/B (leído como "el rayo hacia A desde B") es el conjunto de puntos P tal que [PAB].

La línea AB es el intervalo AB y los dos rayos A/B y B/A. Los puntos en la línea AB se dicen colineales.

Un ángulo consiste en un punto O (el vértice) y dos rayos no colineales desde O (los lados).

Un triángulo se define dados tres puntos no colineales (llamados vértices) y sus tres segmentos AB, BC y CA.

Dados tres puntos A, B y C no colineales, un plano ABC es el conjunto de todos los puntos colineales con pares de puntos en uno o dos de los lados del triángulo ABC.

Dados cuatro puntos A, B, C y D no colineales, un espacio (tridimensional) ABCD es el conjunto de puntos colineales con pares de puntos seleccionados a partir de cualquiera de las cuatro caras (regiones planas) del tetraedro ABCD.

Axiomas de la geometría ordenada

  1. Existen al menos dos puntos.
  2. Si A y B son dos puntos distintos, entonces existe un punto C tal que [ABC].
  3. Si [ABC], entonces A y C son distintos (A≠C).
  4. Si [ABC], entonces [CBA] pero no [CAB].
  5. Si C y D son puntos distintos en la línea AB, entonces A está en la línea CD.
  6. Si AB es una línea, entonces existe un punto C que no está en la línea AB.
  7. (Axioma de Pasch) Si ABC es un triángulo y [BCD] y [CEA], entonces existe un punto F en la línea DE tal que [AFB].
  8. Axioma de dimensionalidad:
    1. Para la geometría ordenada plana, todos los puntos están en un único plano, o
    2. si ABC es un plano, entonces existe un punto D que no está en el plano ABC.
  9. Todos los puntos están en el mismo plano, espacio, etc. (dependiendo de la dimensión que uno elija para trabajar).
  10. (Axioma de Dedekind) Para toda partición de todos los puntos de una línea en dos conjuntos no vacíos tal que ninguno de los puntos de cualquiera se sitúa entre dos puntos de la otra, existe un punto de uno de los conjuntos que se sitúa entre todos los otros puntos de ese conjunto y todo punto del otro conjunto.

Los axiomas están fuertemente relacionados con los axiomas de orden de Hilbert.

Resultados

El problema de Sylvester de los puntos colineales

El teorema de Sylvester-Gallai puede probarse dentro de la geometría ordenada.[3] [4]

Paralelismo

Gauss, Bolyai y Lobachevsky desarrollaron una noción de paralelismo expresable en la geometría ordenada.[5]

Teorema (existencia del paralelismo): Dados un punto A y una línea r que no pasa por A, existen exactamente dos rayos desde A en el plano Ar que no cortan a r. Por ello, existe una línea paralela a través de A que no corta r.

Teorema (transmisibilidad del paralelismo): El paralelismo de un rayo y una línea se preserva añadiendo o sustrayendo un segmento del inicio del rayo.

La simetría del paralelismo no puede probarse en la geometría ordenada.[6] De este modo, el concepto de paralelismo ordenado no define una relación de equivalencia sobre líneas.

Véase también

Referencias

  1. Coxeter, H. S. M. (1969). Introduction to Geometry. New York: John Wiley & Sons. pp. 176. ISBN 0471504580. 
  2. Heath, Thomas (1956). The Thirteen Books of Euclid's Elements (Vol 1). New York: Dover Publications. pp. 165. ISBN 0486600882. 
  3. Coxeter, H. S. M. (1969). Introduction to Geometry. New York: John Wiley & Sons. pp. 181–182. ISBN 0471504580. 
  4. Pambuccian, Victor (2009). «A Reverse Analysis of the Sylvester-Gallai Theorem». Notre Dame Journal of Formal Logic 50:  pp. 245–260. doi:10.1215/00294527-2009-010. 
  5. Coxeter, H. S. M. (1969). Introduction to Geometry. New York: John Wiley & Sons. pp. 189–190. ISBN 0471504580. 
  6. Bussemann, Herbert (1955). Geometry of Geodesics. New York: Academic Press. pp. 139. ISBN 0121483509. 

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Поможем написать реферат

Mira otros diccionarios:

  • Geometría afín — En la matemática, la geometría afín es el estudio de las propiedades geométricas que permancen inmutables bajo transformaciones afines, i.e. transformaciones lineales no singulares y traslaciones. El nombre de geometría afín así como el de… …   Wikipedia Español

  • ordenada — s. f. [Geometria] Linha que indica a distância que há entre um ponto e um plano ou uma reta …   Dicionário da Língua Portuguesa

  • Geometría analítica — La geometría analítica estudia las figuras geométricas mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Su desarrollo histórico comienza con la geometría cartesiana, impulsada con la… …   Wikipedia Español

  • ordenada — ► adjetivo/ sustantivo femenino MATEMÁTICAS Se aplica a la coordenada que, en el sistema de ejes cartesianos, es vertical: ■ la ordenada es perpendicular a la abscisa. * * * ordenada (del lat. «ordinātae linĕae», líneas paralelas) f. Geom. De las …   Enciclopedia Universal

  • Historia de la geometría — La geometría es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto,… …   Wikipedia Español

  • Teorema de Pasch — En geometría, el teorema de Pasch, enunciado en 1882 por el matemático alemán Moritz Pasch, es un resultado de la geometría plana que no puede derivarse de los postulados de Euclides. Aunque ahora se consideraría como un resultado de la teoría… …   Wikipedia Español

  • Recta — Para otros usos de este término, véase Recta (desambiguación). Se ha sugerido que Línea sea fusionado en este artículo o sección (discusión). Una vez que hayas realizado la fusión de artículos, pide la fusión de historiales aquí …   Wikipedia Español

  • línea — (Del lat. linea.) ► sustantivo femenino 1 GEOMETRÍA Extensión continua de puntos considerada sólo en su longitud. 2 Trazo continuo o extensión considerada sólo en su longitud: ■ en la línea del horizonte se veían grandes buques. SINÓNIMO raya 3… …   Enciclopedia Universal

  • John Wallis — John Wallis. John Wallis (Ashford, 23 de noviembre de 1616 – Oxford, 28 de octubre de 1703) fue un matemático inglés a quien se atribuye en parte el desarrollo del cálculo moderno. Fue un precursor del cálculo infinitesi …   Wikipedia Español

  • Topología — Para otros usos de este término, véase Topología (desambiguación). Ilustración del Teor …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”