- Constructivismo (matemáticas)
-
En la filosofía de las matemáticas, la escuela constructivista o el constructivismo requiere para la prueba de la existencia de un objeto matemático, que él mismo pueda ser encontrado o "construído". Para esta escuela no es suficiente la prueba por contradicción clásica (reducción al absurdo) que consiste en suponer que un objeto X no existe y partiendo de esta premisa derivar una contradicción. Según los constructivistas tal procedimiento no permite encontrar el objeto estudiado y en consecuencia su existencia no está probada.
Se confunde frecuentemente el constructivismo con el intuicionismo cuando en realidad este último no es sino un tipo de constructivismo. Para el intuicionismo, las bases fundamentales de las matemáticas se encuentran en lo que denominan la intuición matemática, haciendo en consecuencia de esta una actividad instrínsecamente subjetiva. El constructivismo no adopta en general dicha postura y es completamente compatible con la concepción objetiva de las matemáticas.
La teoría opuesta se denomina platonismo matemático
Aspectos fundamentales
El constructivismo se sirve de la lógica constructivista, que en esencia no es sino la lógica clásica sin el principio del tercero excluido. Esto no quiere decir sin embargo que su utilización se excluya por completo ya que en casos especiales puede ser empleado, como en el ejemplo de las proposiciones sin cuantificadores de la aritmética de Heyting. Lo que esto quiere decir es que tal principio no se considera como un axioma. Por otra parte, la ley de no-contradicción conserva toda su validez. En el mismo sentido, las proposiciones que se restringen a objetos finitos pueden ser categorizadas o bien como verdaderas o bien como falsas, tal como sucede en las matemáticas clásicas, pero esta categorización bivalente no se extiende a proposiciones referidas a colecciones infinitas.
Para Luitzen Egbertus Jan Brouwer, el fundador de la corriente intuicionista, el principio del tercero excluido es una abstracción que resulta de la experiencia respecto de objetos finitos y que se extendió a aquellos infinitos sin justificación. Por ejemplo, si consideramos la Conjetura de Goldbach, todo número par mayor que 2 puede expresarse como la suma de dos números primos y es posible de comprobar, para un número determinado, si así sucede o no. Hasta ahora, todos los números investigados han verificado dicha propiedad.
Pero no existe ninguna prueba que esto suceda para todos los números como así tampoco ninguna prueba de que la conjetura no se verifique para todos los números. Pese a que no puede descartase de que la conjetura llegue algún día a demostrarse en un sentido u en otro, según Brouwer no es legítimo afirmar.
"La Conjetura de Goldbach es verdadera o bien no es verdadera."Este argumento se aplica a todos los problemas similares aún no resueltos. Para Brouwer, aceptar la ley del tercero excluido equivale a suponer que todo problema matemático posee una solución.
Con el rechazo del principio del tercero excluido en tanto que axioma, el remanente del sistema lógico tiene una propiedad de existencia de la cual carece el sistema tradicional: cada vez que
- puede probarse de manera constructiva,
En realidad P(a) puede probarse (al menos) Para un particular
- .
De tal manera; la prueba de la existencia de un objeto matemático queda ligada a la posibilidad de su construcción.
Véase también
Wikimedia foundation. 2010.