Física de semiconductores

Física de semiconductores

La Física de semiconductores es el conjunto de teorías y modelos que explican el comportamiento de los semiconductores, bajo diversas condiciones. Sin embargo gran parte de los semiconductores son estudiados en Física del estado sólido.

Contenido

Primeras observaciones

Michael Faraday descubrió que el sulfuro de plata tiene un coeficiente negativo de resistencia.

En 1839 A. E. Becquerel observó un fotovoltaje al alumbrar un electrodo de un electrolito.

W. Smith, en 1873, advirtió que la resistencia del selenio disminuye al iluminarlo.

En 1874, F. Braun descubrió que la resistencia de los contactos entre metales y piritas de galena depende de la tensión aplicada sobre ellos; A. Schuster observó algo similar en superficies pulidas y no pulidas en cables de cobre.

En 1876, W. G. Adams y R. E. Day construyen la primera fotocélula, y C. E. Fritts presenta el primer rectificador con selenio.

En la década de 1930, E. H. Hall descubre que la cantidad de portadores de carga eléctrica en los semiconductores es mucho menor que en los metales, aunque a diferencia de éstos, aumentan rápidamente con la temperatura, y también que en los semiconductores tienen mucha mayor movilidad. También observó que en algunos casos los portadores eran negativos y en otros positivos.

Conducción eléctrica

Debido a que la banda que efectivamente conduce es la que está casi vacía o casi llena, la poca densidad de los portadores de carga en el seno del cristal hace que se comporten como un gas clásico o maxweliano.

Portadores de cargas

En un cristal hay dos clases de portadores de carga: electrones y huecos. Si bien estos últimos son ficticios, ya que resultan de un estado vacante en la banda de valencia, esta condición no invalida los modelos. Sin entrar en detalles, un semiconductor presenta dos tipos de corriente eléctrica:

  • Corriente de arrastre (o deriva): debida a un campo eléctrico.
  • Corriente de difusión: debida a la diferencia de concentración de portadores.

J_n = |q|(\mu_n n\vec E + D_n \nabla n)

J_p = |q|(\mu_p p\vec E + D_p \nabla p)

Tipos de Semiconductores

Una de las propiedades más importantes de los semiconductores es la cantidad de portadores como función de la temperatura. El modelo de las 2 corrientes es el usado para describir los portadores, donde los electrones exitados son los que conducen cargas negativas y los huecos transportan carga positiva. Así que las cantidades importantes a determinar son la cantidad de portadores en la banda de conducción ( nc ) y la cantidad de portadores en la banda de valencia ( pv ).

Dependiendo de la relación entre la cantidad de portadores en cada banda podremos clasificar a los semiconductores. Así es como si la cantidad de portadores (huecos) en la banda de valencia es igual a la cantidad de portadores de la banda de conducción (electrones) tendremos lo que se llama un semiconductor intrínseco (nc = pv). Si, en cambio, la relación cambia se dice que es un semiconductor extrínseco.

El caso intrínseco se da en cristales puros, donde la densidad de carga es despreciable. Las bandas de conducción solo pueden ser ocupadas por electrones que abandonaron la banda de valencia, dejando una vacancia, o sea un hueco. De esta manera la cantidad de cada tipo de portador esta siempre balanceada.

El caso extrinseco, por el contrario, tiene exceso ya sea de electrones o huecos. Esto se debe que el cristal puro se encuentra "contaminado" con un átomo de otro tipo que puede agregar un donor (electron) o un aceptor (hueco), esto pasa cuando ese átomo contaminante tiene una cantidad distinta de electrones en la capa de valencia a los de la red pura.

Contaminación o dopaje

Los semiconductores en sí no presentan propiedades prácticas, por esto se los contamina para darles alguna propiedad especial, como alterar la probabilidad de ocupación de las bandas de energía, crear centros de recombinación, y otros.

Por ejemplo, en un cristal de silicio o de germanio, dopado con elementos pentavalentes (As, P o Sb); al tener éstos elementos 5 electrones en la última capa, resultará que al formarse la estructura cristalina, el quinto electrón no estará ligado en ningún enlace covalente, encontrándose, aún sin estar libre, en un nivel energético superior a los cuatro restantes. Si consideramos el efecto de la temperatura, observaremos que ahora, además de la formación de pares e-h, se liberarán también los electrones no enlazados, ya que la energía necesaria para liberar el electrón excedente es del orden de la centésima parte de la correspondiente a los electrones de los enlaces covalentes (en torno a 0,01 eV).

Semiconductor tipo n.png

Así, en el semiconductor aparecerá una mayor cantidad de electrones que de huecos; por ello se dice que los electrones son los portadores mayoritarios de la energía eléctrica y puesto que este excedente de electrones procede de las impurezas pentavalentes, a éstas se las llama donadoras. Aún siendo mayor n que p, la ley de masas se sigue cumpliendo, dado que aunque aparentemente sólo se aumente el número de electrones libres, al hacerlo, se incrementa la probabilidad de recombinación, lo que resulta en un disminución del número de huecos p, es decir: :n > ni = pi > p, tal que: n·p = ni² Por lo que respecta a la conductividad del material, ésta aumenta enormemente, así, por ejemplo, introduciendo sólo un átomo donador por cada 1000 átomos de silicio, la conductividad es 24100 veces mayor que la del silicio puro.

En cambio si se ha dopado con elementos trivalentes (Al, B, Ga o In), las impurezas aportan una vacante, por lo que se las denomina aceptoras (de electrones, se entiende). Ahora bien, el espacio vacante no es un hueco como el formado antes con el salto de un electrón, si no que tiene un nivel energético ligeramente superior al de la banda de valencia (del orden de 0,01 eV).

Semiconductor tipo p.png

En este caso, los electrones saltarán a las vacantes con facilidad dejando huecos en la banda de valencia en mayor número que electrones en la banda de conducción, de modo que ahora son los huecos los portadores mayoritarios. Al igual que en el caso anterior, el incremento del número de huecos se ve compensado en cierta medida por la mayor probabilidad de recombinación, de modo que la ley de masas también se cumple en este caso:


  • Hay que hacer mejor presentables estos datos. *
  • Prefiero dos gráfico a una tabla. *
Energía de ionización para impurezas en el silicio
Átomo
Fósforo 0.044 D
Astato 0.049 D
Antimonio 0.039 D
Bismuto 0.067 D
Boro 0.045 A
Aluminio 0.057 A
Galio 0.065 A
Indio 0.16 A
Talio 0.26 A
Zinc 0.55 A
0.31 A
Cobre 0.49 A
0.24 A
Oro 0.54 A
0.35 D
Hierro 0.55 D
0.40 D
Mn 0.53 D
Litio 0.033 D


Germanio P 0.012 As 0.013 Sb 0.0096

B 0.01 Al 0.01 Ga 0.011 In 0.011 Tl 0.01

Cobre C 0.26 A V 0.32 A 0.04 A Ag C 0.13 A 0.29 A V 0.09 A Au C 0.04 A 0.20 A V 0.15 A 0.05 D Zn V 0.09 A 0.03 A Cd V 0.20 A 0.06 A Mn C 0.37 A V 0.16 A Fe C 0.27 A V 0.35 A Co C 0.31 A V 0.25 A Ni C 0.30 A V 0.22 A Pt C 0.20 A V 0.04 A


Wikimedia foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Mira otros diccionarios:

  • Física del estado sólido — La física del estado sólido, rama de la física de la materia condensada, trata sobre el estudio de la materia rígida, o sólidos. Estudia las propiedades físicas de los materiales sólidos utilizando disciplinas tales como la mecánica cuántica, la… …   Wikipedia Español

  • Física aplicada — Imagen obtenida por resonancia magnética. Física aplicada es un término genérico que indica la parte de la física que se interesa particularmente por el uso de tecnologías. Aplicada se distingue de pura mediante una sutil combinación de factores… …   Wikipedia Español

  • Física del estado sólido — La física del estado sólido estudia las propiedades físicas de los materiales sólidos utilizando disciplinas tales como la mecánica cuántica, la cristalografía el electromagnetismo y la metalurgia física. La física del estado sólido forma la base …   Enciclopedia Universal

  • Anexo:Ganadores del Premio Nobel de Física — El Premio Nobel de Física fue establecido en el testamento de 1895 del químico sueco Alfred Nobel. El Premio Nobel de Física …   Wikipedia Español

  • Premio Nobel de Física — Anexo:Premio Nobel de Física Saltar a navegación, búsqueda El Premio Nobel de Física ha sido entregado desde 1901, galardonando a 180 científicos hasta el 2009.[1] El premio es entregado cada año por la Real Academia de las Ciencias de Suecia. La …   Wikipedia Español

  • Anexo:Materiales semiconductores — Los semiconductores son materiales cuya conductancia eléctrica puede ser controlada de forma permanente o dinámica variando su estado desde conductor a aislante. Debido a su uso en dispositivos tales como los transistores (y por tanto en… …   Wikipedia Español

  • Materiales semiconductores — Anexo:Materiales semiconductores Saltar a navegación, búsqueda Los semiconductores son materiales cuya conductancia eléctrica puede ser controlada de forma permanente o dinámica variando su estado desde conductor a aislante. Lista de materiales… …   Wikipedia Español

  • Deposición en semiconductores — Saltar a navegación, búsqueda La deposición en semiconductores es el proceso por el cual se crea una nueva capa de un material sobre una oblea de semiconductor. La ventaja de esta técnica es que al crear capas nuevas no se afecta mucho a las ya… …   Wikipedia Español

  • Ruido (física) — Saltar a navegación, búsqueda En el ámbito de las telecomunicaciones y de los dispositivos electrónicos, en general, se considera ruido a todas las perturbaciones eléctricas que interfieren sobre las señales transmitidas o procesadas. También, de …   Wikipedia Español

  • Oxidación en semiconductores — La oxidación es uno de los procesos básicos en la fabricación de circuitos integrados. Presenta la desventaja respecto a la deposición de que hay un consumo del sustrato. La ventaja es que el óxido así generado es de más calidad. Otra… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”