- Lógica difusa
-
La lógica difusa o lógica heuristica se basa en lo relativo de lo observado como posición diferencial. Este tipo de lógica toma dos valores aleatorios, pero contextualizados y referidos entre sí. Así, por ejemplo, una persona que mida 2 metros es claramente una persona alta, si previamente se ha tomado el valor de persona baja y se ha establecido en 1 metro. Ambos valores están contextualizados a personas y referidos a una medida métrica lineal.
Contenido
Funcionamiento
La lógica difusa se adapta mejor al mundo real en el que vivimos, e incluso puede comprender y funcionar con nuestras expresiones, del tipo "hace mucho calor", "no es muy alto", "el ritmo del corazón está un poco acelerado", etc.
La clave de esta adaptación al lenguaje, se basa en comprender los cuantificadores de nuestro lenguaje (en los ejemplos de arriba "mucho", "muy" y "un poco").
En la teoría de conjuntos difusos se definen también las operaciones de unión, intersección, diferencia, negación o complemento, y otras operaciones sobre conjuntos (ver también subconjunto difuso), en los que se basa esta lógica.
Para cada conjunto difuso, existe asociada una función de pertenencia para sus elementos, que indican en qué medida el elemento forma parte de ese conjunto difuso. Las formas de las funciones de pertenencia más típicas son trapezoidal, lineal y curva.
Se basa en reglas heurísticas de la forma SI (antecedente) ENTONCES (consecuente), donde el antecedente y el consecuente son también conjuntos difusos, ya sea puros o resultado de operar con ellos. Sirvan como ejemplos de regla heurística para esta lógica (nótese la importancia de las palabras "muchísimo", "drásticamente", "un poco" y "levemente" para la lógica difusa):
- SI hace muchísimo calor ENTONCES aumentó drásticamente la temperatura.
- SI voy a llegar un poco tarde ENTONCES aumento levemente la velocidad.
Los métodos de inferencia para esta base de reglas deben ser simples, veloces y eficaces. Los resultados de dichos métodos son un área final, fruto de un conjunto de áreas solapadas entre sí (cada área es resultado de una regla de inferencia). Para escoger una salida concreta a partir de tanta premisa difusa, el método más usado es el del centroide, en el que la salida final será el centro de gravedad del área total resultante.
Las reglas de las que dispone el motor de inferencia de un sistema difuso pueden ser formuladas por expertos, o bien aprendidas por el propio sistema, haciendo uso en este caso de redes neuronales para fortalecer las futuras tomas de decisiones.
Los datos de entrada suelen ser recogidos por sensores, que miden las variables de entrada de un sistema. El motor de inferencias se basa en chips difusos, que están aumentando exponencialmente su capacidad de procesamiento de reglas año a año.
Un esquema de funcionamiento típico para un sistema difuso podría ser de la siguiente manera:
En la figura, el sistema de control hace los cálculos con base en sus reglas heurísticas, comentadas anteriormente. La salida final actuaría sobre el entorno físico, y los valores sobre el entorno físico de las nuevas entradas (modificado por la salida del sistema de control) serían tomadas por sensores del sistema.
Por ejemplo, imaginando que nuestro sistema difuso fuese el climatizador de un coche que se autorregula según las necesidades: Los chips difusos del climatizador recogen los datos de entrada, que en este caso bien podrían ser la temperatura y humedad simplemente. Estos datos se someten a las reglas del motor de inferencia (como se ha comentado antes, de la forma SI... ENTONCES... ), resultando un área de resultados. De esa área se escogerá el centro de gravedad, proporcionándola como salida. Dependiendo del resultado, el climatizador podría aumentar la temperatura o disminuirla dependiendo del grado de la salida.
Aplicaciones
Aplicaciones generales
La lógica difusa se utiliza cuando la complejidad del proceso en cuestión es muy alta y no existen modelos matemáticos precisos, para procesos altamente no lineales y cuando se envuelven definiciones y conocimiento no estrictamente definido (impreciso o subjetivo).
En cambio, no es una buena idea usarla cuando algún modelo matemático ya soluciona eficientemente el problema, cuando los problemas son lineales o cuando no tienen solución.
Esta técnica se ha empleado con bastante éxito en la industria, principalmente en Japón, y cada vez se está usando en gran multitud de campos. La primera vez que se usó de forma importante fue en el metro japonés, con excelentes resultados. A continuación se citan algunos ejemplos de su aplicación:
- Sistemas de control de acondicionadores de aire
- Sistemas de foco automático en cámaras fotográficas
- Electrodomésticos familiares (frigoríficos, lavadoras...)
- Optimización de sistemas de control industriales
- Sistemas de escritura
- Mejora en la eficiencia del uso de combustible en motores
- Sistemas expertos del conocimiento (simular el comportamiento de un experto humano)
- Tecnología informática
- Bases de datos difusas: Almacenar y consultar información imprecisa. Para este punto, por ejemplo, existe el lenguaje FSQL.
- ...y, en general, en la gran mayoría de los sistemas de control que no dependen de un Sí/No.
Lógica difusa en inteligencia artificial
En Inteligencia artificial, la lógica difusa, o lógica borrosa se utiliza para la resolución de una variedad de problemas, principalmente los relacionados con control de procesos industriales complejos y sistemas de decisión en general, la resolución la compresión de datos. Los sistemas de lógica difusa están también muy extendidos en la tecnología cotidiana, por ejemplo en cámaras digitales, sistemas de aire acondicionado, lavarropas, etc. Los sistemas basados en lógica difusa imitan la forma en que toman decisiones los humanos, con la ventaja de ser mucho más rápidos. Estos sistemas son generalmente robustos y tolerantes a imprecisiones y ruidos en los datos de entrada. Algunos lenguajes de programación lógica que han incorporado la lógica difusa serían por ejemplo las diversas implementaciones de Fuzzy PROLOG o el lenguaje Fril.
Consiste en la aplicación de la lógica difusa con la intención de imitar el razonamiento humano en la programación de computadoras. Con la lógica convencional, las computadoras pueden manipular valores estrictamente duales, como verdadero/falso, sí/no o ligado/desligado. En la lógica difusa, se usan modelos matemáticos para representar nociones subjetivas, como caliente/tibio/frío, para valores concretos que puedan ser manipuladas por los ordenadores.
En este paradigma, también tiene un especial valor la variable del tiempo, ya que los sistemas de control pueden necesitar retroalimentarse en un espacio concreto de tiempo, pueden necesitarse datos anteriores para hacer una evaluación media de la situación en un período anterior...
Ventajas e inconvenientes
Como principal ventaja, cabe destacar los excelentes resultados que brinda un sistema de control basado en lógica difusa: ofrece salidas de una forma veloz y precisa, disminuyendo así las transiciones de estados fundamentales en el entorno físico que controle. Por ejemplo, si el aire acondicionado se encendiese al llegar a la temperatura de 30º, y la temperatura actual oscilase entre los 29º-30º, nuestro sistema de aire acondicionado estaría encendiéndose y apagándose continuamente, con el gasto energético que ello conllevaría. Si estuviese regulado por lógica difusa, esos 30º no serían ningún umbral, y el sistema de control aprendería a mantener una temperatura estable sin continuos apagados y encendidos.
También está la indecisión de decantarse bien por los expertos o bien por la tecnología (principalmente mediante redes neuronales) para reforzar las reglas heurísticas iniciales de cualquier sistema de control basado en este tipo de lógica.
Véase también
- Lógica
- Red neuronal
- Inteligencia artificial
Enlaces externos
- Centro de investigación español, organiza cursos y seminarios sobre lógica difusa
- FuzzyLite: A Free Open Source Fuzzy Inference System Library (C++)
- Lógica difusa: Introducción a la lógica difusa y su relación con el control de procesos
- Lógica difusa: ¿una concepción infinitesimal de la verdad?
- Morillas Raya, A. (2006): Introducción al análisis de datos difusos PDF
- Curso Introductorio de Conjuntos y Sistemas Difusos (Lógica Difusa y Aplicaciones), por el Dr. José Galindo G., Universidad de Málaga (España)
Categorías:- Lógica difusa
- Sistemas lógicos
- Programación lógica
Wikimedia foundation. 2010.