Álgebra de Borel

Álgebra de Borel

En matemáticas, el álgebra de Borel (más correctamente, σ-álgebra de Borel, también llamada boreliana) sobre un espacio topológico X es una σ-álgebra de subconjuntos de X asociada a la topología de X. En la literatura matemática se pueden encontrar dos definiciones no equivalentes de ésta:

  • La σ-álgebra generada por los conjuntos abiertos.
  • La σ-álgebra generada por los conjuntos compactos.

La σ-álgebra generada por una colección T de subconjuntos de X se define como la mínima σ-álgebra que contiene a T. La existencia y unicidad de una tal σ-álgebra se demuestra fácilmente notando que la intersección de todas las σ-álgebras que contienen a T es en sí misma una σ-álgebra que contiene a T.

Los elementos del álgebra de Borel se llaman conjuntos de Borel o conjuntos borelianos.

En espacios topológicos generales, o aun en los localmente compactos, las dos estructuras definidas arriba pueden ser diferentes, aunque este fenómeno se considera patológico en el análisis matemático. De hecho, las dos estructuras coinciden si el espacio en consideración es un espacio localmente compacto, separable y métrico.

Ejemplo

Un ejemplo importante, especialmente en teoría de probabilidad, es el álgebra boreliana sobre el conjunto de los números reales. Es la σ-álgebra en la cual se define la medida de Borel. Dada una variable aleatoria real en un espacio de probabilidad, su distribución de probabilidad es, por definición, también una medida en el álgebra boreliana. El álgebra de Borel también es la mínima σ-álgebra sobre R que contiene a los subconjuntos cerrados de R, a los intervalos abiertos o cerrados, a los intervalos semiabiertos de la forma (a, b], o a los intervalos de la forma (−∞,b].

Referencias

  • William Arveson, An Invitation to C*-algebras, Springer-Verlag, 1981. Una excelente presentación del aparataje de la topología polonesa se encuentra en el capítulo 3 de esta obra.
  • Richard Dudley, Real Analysis and Probability. Wadsworth, Brooks and Cole, 1989
  • Paul Halmos, Measure Theory, D.van Nostrand Co., 1950
  • Halsey Royden, Real Analysis, Prentice Hall, 1988
  • Donald L. Cohn, Measure theory, Birkhäuser, 1997.

Wikimedia foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Mira otros diccionarios:

  • Borel algebra — In mathematics, the Borel algebra (or Borel sigma; algebra) on a topological space X is a sigma; algebra of subsets of X associated with the topology of X . In the mathematics literature, there are at least two nonequivalent definitions of this… …   Wikipedia

  • Borel set — In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named… …   Wikipedia

  • Borel hierarchy — In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number… …   Wikipedia

  • Borel — may refer to: * Émile Borel (1871–1956), a French mathematician * Armand Borel (1923–2003), a Swiss mathematician * Jacques Borel, a French novelist * Gabriel Borel, a French aircraft designer * Borel algebra, operating on Borel sets, named after …   Wikipedia

  • Borel-Algebra — Die borelsche σ Algebra ist ein Begriff aus der Mathematik, der ein Scharnier zwischen den Zweigen Topologie und Maßtheorie bildet. Jeder Topologie lässt sich in eindeutiger Weise eine σ Algebra zuordnen, die man die zugehörige borelsche σ… …   Deutsch Wikipedia

  • Borel-Menge — Die borelsche σ Algebra ist ein Begriff aus der Mathematik, der ein Scharnier zwischen den Zweigen Topologie und Maßtheorie bildet. Jeder Topologie lässt sich in eindeutiger Weise eine σ Algebra zuordnen, die man die zugehörige borelsche σ… …   Deutsch Wikipedia

  • Borel-Raum — Die borelsche σ Algebra ist ein Begriff aus der Mathematik, der ein Scharnier zwischen den Zweigen Topologie und Maßtheorie bildet. Jeder Topologie lässt sich in eindeutiger Weise eine σ Algebra zuordnen, die man die zugehörige borelsche σ… …   Deutsch Wikipedia

  • Borel-σ-Algebra — Die borelsche σ Algebra ist ein Begriff aus der Mathematik, der ein Scharnier zwischen den Zweigen Topologie und Maßtheorie bildet. Jeder Topologie lässt sich in eindeutiger Weise eine σ Algebra zuordnen, die man die zugehörige borelsche σ… …   Deutsch Wikipedia

  • Borel’sche σ-Algebra — Die borelsche σ Algebra ist ein Begriff aus der Mathematik, der ein Scharnier zwischen den Zweigen Topologie und Maßtheorie bildet. Jeder Topologie lässt sich in eindeutiger Weise eine σ Algebra zuordnen, die man die zugehörige borelsche σ… …   Deutsch Wikipedia

  • Borel measure — In mathematics, the Borel algebra is the smallest sigma; algebra on the real numbers R containing the intervals, and the Borel measure is the measure on this sigma; algebra which gives to the interval [ a , b ] the measure b − a (where a < b… …   Wikipedia

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”