Integrales de funciones racionales

Integrales de funciones racionales

Anexo:Integrales de funciones racionales

La siguiente es una lista de integrales de funciones racionales.

\int(ax^k + b)^n dx = \frac {1}{a} \int (ax^k + b)^n a dx = \frac {1}{a} \frac{(ax^k + b)^{n+1}}{(n + 1)kx} \qquad\mbox{(para } n\neq -1\mbox{)}


\int(ax + b)^n dx = \frac {1}{a} \int (ax + b)^n a dx = \frac {1}{a} \frac{(ax + b)^{n+1}}{n + 1} \qquad\mbox{(para } n\neq -1\mbox{)}
\int\frac{dx}{ax + b} = \frac{1}{a}\int{(ax + b)^{-1}} a dx = \frac{1}{a}\ln\left|ax + b\right|
\int x(ax + b)^n dx = \frac{a(n + 1)x - b}{a^2(n + 1)(n + 2)} (ax + b)^{n+1} \qquad\mbox{(para }n \not\in \{-1, -2\}\mbox{)}
\int\frac{x\;dx}{ax + b} = \frac{x}{a} - \frac{b}{a^2}\ln\left|ax + b\right|
\int\frac{x\;dx}{(ax + b)^2} = \frac{b}{a^2(ax + b)} + \frac{1}{a^2}\ln\left|ax + b\right|
\int\frac{x\;dx}{(ax + b)^n} = \frac{a(1 - n)x - b}{a^2(n - 1)(n - 2)(ax + b)^{n-1}} \qquad\mbox{(para } n\not\in \{-1, -2\}\mbox{)}
\int\frac{x^2\;dx}{ax + b} = \frac{1}{a^3}\left(\frac{(ax + b)^2}{2} - 2b(ax + b) + b^2\ln\left|ax + b\right|\right)
\int\frac{x^2\;dx}{(ax + b)^2} = \frac{1}{a^3}\left(ax + b - 2b\ln\left|ax + b\right| - \frac{b^2}{ax + b}\right)
\int\frac{x^2\;dx}{(ax + b)^3} = \frac{1}{a^3}\left(\ln\left|ax + b\right| + \frac{2b}{ax + b} - \frac{b^2}{2(ax + b)^2}\right)
\int\frac{x^2\;dx}{(ax + b)^n} = \frac{1}{a^3}\left(-\frac{1}{(n- 3)(ax + b)^{n-3}} + \frac{2b}{(n-2)(a + b)^{n-2}} - \frac{b^2}{(n - 1)(ax + b)^{n-1}}\right) \qquad\mbox{(para } n\not\in \{1, 2, 3\}\mbox{)}
\int\frac{dx}{x(ax + b)} = -\frac{1}{b}\ln\left|\frac{ax+b}{x}\right|
\int\frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2}\ln\left|\frac{ax+b}{x}\right|
\int\frac{dx}{x^2(ax+b)^2} = -a\left(\frac{1}{b^2(ax+b)} + \frac{1}{ab^2x} - \frac{2}{b^3}\ln\left|\frac{ax+b}{x}\right|\right)
\int\frac{dx}{x^2+a^2} = \frac{1}{a}\arctan\frac{x}{a}
\int\frac{dx}{x^2-a^2} = -\frac{1}{a}\,\mathrm{artanh}\frac{x}{a} = \frac{1}{2a}\ln\frac{a-x}{a+x} \qquad\mbox{(para }|x| < |a|\mbox{)}
\int\frac{dx}{x^2-a^2} = -\frac{1}{a}\,\mathrm{arcoth}\frac{x}{a} = \frac{1}{2a}\ln\frac{x-a}{x+a} \qquad\mbox{(para }|x| > |a|\mbox{)}
\int\frac{dx}{ax^2+bx+c} = \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(para }4ac-b^2>0\mbox{)}
\int\frac{dx}{ax^2+bx+c} = \frac{2}{\sqrt{b^2-4ac}}\,\mathrm{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} = \frac{1}{\sqrt{b^2-4ac}}\ln\left|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right| \qquad\mbox{(for }4ac-b^2<0\mbox{)}
\int\frac{x\;dx}{ax^2+bx+c} = \frac{1}{2a}\ln\left|ax^2+bx+c\right|-\frac{b}{2a}\int\frac{dx}{ax^2+bx+c}
\int\frac{mx+n}{ax^2+bx+c}dx = \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(para }4ac-b^2>0\mbox{)}
\int\frac{mx+n}{ax^2+bx+c}dx = \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{b^2-4ac}}\,\mathrm{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} \qquad\mbox{(para }4ac-b^2<0\mbox{)}
\int\frac{dx}{(ax^2+bx+c)^n} = \frac{2ax+b}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}+\frac{(2n-3)2a}{(n-1)(4ac-b^2)}\int\frac{dx}{(ax^2+bx+c)^{n-1}}
\int\frac{x\;dx}{(ax^2+bx+c)^n} = \frac{bx+2c}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}-\frac{b(2n-3)}{(n-1)(4ac-b^2)}\int\frac{dx}{(ax^2+bx+c)^{n-1}}
\int\frac{dx}{x(ax^2+bx+c)} = \frac{1}{2c}\ln\left|\frac{x^2}{ax^2+bx+c}\right|-\frac{b}{2c}\int\frac{dx}{ax^2+bx+c}
Obtenido de "Anexo:Integrales de funciones racionales"

Wikimedia foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Mira otros diccionarios:

  • Anexo:Integrales de funciones racionales — La siguiente es una lista de integrales de funciones racionales …   Wikipedia Español

  • Lista de integrales de funciones racionales — La siguiente es una lista de integrales de funciones racionales …   Enciclopedia Universal

  • Integrales — Anexo:Integrales Saltar a navegación, búsqueda Lista de integrales según el tipo de función: Lista de integrales de funciones racionales Lista de integrales de funciones irracionales Lista de integrales de funciones trigonométricas Lista de… …   Wikipedia Español

  • Anexo:Integrales — Lista de integrales según el tipo de función: Lista de integrales de funciones racionales Lista de integrales de funciones irracionales Lista de integrales de funciones trigonométricas Lista de integrales de funciones hiperbólicas Lista de… …   Wikipedia Español

  • Lista de integrales — según el tipo de función: ● Lista de integrales de funciones racionales ● Lista de integrales de funciones irracionales ● Lista de integrales de funciones trigonométricas ● Lista de integrales de funciones hiperbólicas ● Lista de integrales de… …   Enciclopedia Universal

  • Anexo:Funciones matemáticas — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Fórmulas de reducción para integrales — Anexo:Fórmulas de reducción para integrales Saltar a navegación, búsqueda En ocasiones la integración definida o indefinida de funciones de una variable se facilita mediante las llamadas fórmulas de reducción. Son éstas una cierta forma de poner… …   Wikipedia Español

  • Anexo:Fórmulas de reducción para integrales — En ocasiones la integración definida o indefinida de funciones de una variable se facilita mediante las llamadas fórmulas de reducción. Son éstas una cierta forma de poner en relación integrales que, además de depender de una determinada variable …   Wikipedia Español

  • Métodos de integración — Este artículo o sección necesita ser wikificado con un formato acorde a las convenciones de estilo. Por favor, edítalo para que las cumpla. Mientras tanto, no elimines este aviso. También puedes ayudar wikificando otros artículos o cambiando este …   Wikipedia Español

  • Integración — La integral definida de una función representa el área limitada por la gráfica de la función, con signo positivo cuando la función toma valores positivos y negativo cuando toma valores negativos. Para otros usos de este término, véase Integración …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”