Masa

Masa
Patrón de un kilogramo masa.
Para otros usos de este término, véase Masa (desambiguación).

La masa, en física, es la cantidad de materia de un cuerpo.[1] Es una propiedad intrínseca de los cuerpos que determina la medida de la masa inercial y de la masa gravitacional. La unidad utilizada para medir la masa en el Sistema Internacional de Unidades es el kilogramo (kg). Es una cantidad escalar y no debe confundirse con el peso, que es una cantidad vectorial que representa una fuerza.

Contenido

Historia

El concepto de masa surge de la confluencia de dos leyes: la ley Gravitación Universal de Newton y la 2ª Ley de Newton (o 2º Principio). Según la ley de la Gravitación de Newton, la atracción entre dos cuerpos es proporcional al producto de dos constantes, denominadas masa gravitacional —una de cada uno de ellos—, siendo así la masa gravitatoria una propiedad de la materia en virtud de la cual dos cuerpos se atraen; por la 2ª ley (o principio) de Newton, la fuerza aplicada sobre un cuerpo es directamente proporcional a la aceleración que experimenta, denominándose a la constante de proporcionalidad: masa inercial del cuerpo.

Para Einstein la gravedad es una propiedad del espacio-tiempo: una deformación de la geometría del espacio-tiempo por efecto de la masa de los cuerpos.[2]

No es obvio que la masa inercial y la masa gravitatoria coincidan. Sin embargo todos los experimentos muestran que sí. Para la física clásica esta identidad era accidental. Ya Newton, para quien peso e inercia eran propiedades independientes de la materia, propuso que ambas cualidades son proporcionales a la cantidad de materia, a la cual denominó "masa". Sin embargo, para Einstein, la coincidencia de masa inercial y masa gravitacional fue un dato crucial y uno de los puntos de partida para su teoría de la Relatividad y, por tanto, para poder comprender mejor el comportamiento de la naturaleza. Según Einstein, esa identidad significa que: «la misma cualidad de un cuerpo se manifiesta, de acuerdo con las circunstancias, como inercia o como peso.»

Esto llevó a Einstein a enunciar el Principio de equivalencia: «las leyes de la naturaleza deben expresarse de modo que sea imposible distinguir entre un campo gravitatorio uniforme y un sistema referencial acelerado.» Así pues, «masa inercial» y «masa gravitatoria» son indistinguibles y, consecuentemente, cabe un único concepto de «masa» como sinónimo de «cantidad de materia», según formuló Newton.

En palabras de D. M. McMaster: «la masa es la expresión de la cantidad de materia de un cuerpo, revelada por su peso, o por la cantidad de fuerza necesaria para producir en un cuerpo cierta cantidad de movimiento en un tiempo dado.»[3]

En la física clásica, la masa es una constante de un cuerpo. En física relativista, la masa es función de la velocidad que el cuerpo posee respecto al observador. Además, la física relativista demostró la relación de la masa con la energía, quedando probada en las reacciones nucleares; por ejemplo, en la explosión de una bomba atómica queda patente que la masa es una magnitud que trasciende a la masa inercial y a la masa gravitacional.

Es un concepto central en física, química, astronomía y otras disciplinas afines.

Masa inercial

Artículo principal: Masa inercial

La masa inercial para la física clásica viene determinada por la Segunda y Tercera Ley de Newton. Dados dos cuerpos, A y B, con masas inerciales mA (conocida) y mB (que se desea determinar), en la hipótesis dice que las masas son constantes y que ambos cuerpos están aislados de otras influencias físicas, de forma que la única fuerza presente sobre A es la que ejerce B, denominada FAB, y la única fuerza presente sobre B es la que ejerce A, denominada FBA, de acuerdo con la Segunda Ley de Newton:

F_{AB} = m_A a_A \,\!
F_{BA} = m_B a_B \,\!.

donde aA y aB son las aceleraciones de A y B, respectivamente. Es necesario que estas aceleraciones no sean nulas, es decir, que las fuerzas entre los dos objetos no sean iguales a cero. Una forma de lograrlo es, por ejemplo, hacer colisionar los dos cuerpos y efectuar las mediciones durante el choque.

La Tercera Ley de Newton afirma que las dos fuerzas son iguales y opuestas:

F_{AB} = - F_{BA} \,\!.

Sustituyendo en las ecuaciones anteriores, se obtiene la masa de B como

m_B = {a_A \over a_B} m_A \,\!.

Así, el medir aA y aB permite determinar mB en relación con mA, que era lo buscado. El requisito de que aB sea distinto de cero hace que esta ecuación quede bien definida.

En el razonamiento anterior se ha supuesto que las masas de A y B son constantes. Se trata de una suposición fundamental, conocida como la conservación de la masa, y se basa en la hipótesis de que la materia no puede ser creada ni destruida, sólo transformada (dividida o recombinada). Sin embargo, a veces es útil considerar la variación de la masa del cuerpo en el tiempo; por ejemplo, la masa de un cohete decrece durante su lanzamiento. Esta aproximación se hace ignorando la materia que entra y sale del sistema. En el caso del cohete, esta materia se corresponde con el combustible que es expulsado; la masa conjunta del cohete y del combustible es constante.

Masa gravitacional

Artículo principal: Masa gravitacional

Considérense dos cuerpos A y B con masas gravitacionales MA y MB, separados por una distancia |rAB|. La Ley de la Gravitación de Newton dice que la magnitud de la fuerza gravitatoria que cada cuerpo ejerce sobre el otro es

|F| = {G M_A M_B \over |r_{AB}|^2}

donde G es la constante de gravitación universal. La sentencia anterior se puede reformular de la siguiente manera: dada la aceleración g de una masa de referencia en un campo gravitacional (como el campo gravitatorio de la Tierra), la fuerza de la gravedad en un objeto con masa gravitacional M es de la magnitud

|F| = Mg \,\!.

Esta es la base según la cual las masas se determinan en las balanzas. En las balanzas de baño, por ejemplo, la fuerza |F| es proporcional al desplazamiento del muelle debajo de la plataforma de pesado (véase Ley de Hooke), y la escala está calibrada para tener en cuenta g de forma que se pueda leer la masa M.

Equivalencia de la masa inercial y la masa gravitatoria

Se demuestra experimentalmente que la masa inercial y la masa gravitacional son iguales —con un grado de precisión muy alto—. Estos experimentos son esencialmente pruebas del fenómeno ya observado por Galileo de que los objetos caen con una aceleración independiente de sus masas (en ausencia de factores externos como el rozamiento).

Supóngase un objeto con masas inercial y gravitacional m y M, respectivamente. Si la gravedad es la única fuerza que actúa sobre el cuerpo, la combinación de la segunda ley de Newton y la ley de la gravedad proporciona su aceleración como:

a = {M \over m}g

Por tanto, todos los objetos situados en el mismo campo gravitatorio caen con la misma aceleración si y sólo si la proporción entre masa gravitacional e inercial es igual a una constante. Por definición, se puede tomar esta proporción como 1.

Consecuencias de la Relatividad

Históricamente, se ha usado el término "masa" para describir a la magnitud E/c², (que se denominaba "masa relativista") y a m, que se denominaba "masa en reposo". Los físicos no recomiendan seguir esta terminología, porque no es necesario tener dos términos para la energía de una partícula y porque crea confusión cuando se habla de partículas "sin masa". En este artículo, siempre se hace referencia a la "masa en reposo".
Para más información, véase el 'Usenet Physics FAQ'
en la sección de Enlaces externos.

En la teoría especial de la relatividad la "masa" se refiere a la masa inercial de un objeto medida en el sistema de referencia en el que está en reposo (conocido como "sistema de reposo"). El método anterior para obtener la masa inercial sigue siendo válido, siempre que la velocidad del objeto sea mucho menor que la velocidad de la luz, de forma que la mecánica clásica siga siendo válida.

En la mecánica relativista, la masa de una partícula libre está relacionada con su energía y su momento lineal según la siguiente ecuación:

{E^2 \over c^2} = m^2 c^2 + p^2.

Que se puede reordenar de la siguiente manera:

E = mc^2 \sqrt{1 + \left({p \over mc}\right)^2}

El límite clásico se corresponde con la situación en la que el momento p es mucho menor que mc, en cuyo caso se puede desarrollar la raíz cuadrada en una serie de Taylor:

E = mc^2 + {p^2 \over 2m} + ...

El término principal, que es el mayor, es la energía en reposo de la partícula. Si la masa es distinta de cero, una partícula siempre tiene como mínimo esta cantidad de energía, independientemente de su cantidad de movimiento o moméntum. La energía en reposo, normalmente, es inaccesible, pero puede liberarse dividiendo o combinando partículas, como en la fusión y fisión nucleares. El segundo término es la energía cinética clásica, que se demuestra usando la definición clásica de momento cinético o momento lineal:

p = mv \,\!

y sustituyendo para obtener:

E = mc^2 + {mv^2 \over 2} + ...

La relación relativista entre energía, masa y momento también se cumple para partículas que no tienen masa (que es un concepto mal definido en términos de mecánica clásica). Cuando m = 0, la relación se simplifica en

E = pc \,\!

donde p es el momento relativista.

Esta ecuación define la mecánica de las partículas sin masa como el fotón, que son las partículas de la luz.

Masa convencional

Según el documento D28 "Conventional value of the result of weighing in air" de la Organización Internacional de Metrología Legal (OIML), la masa convencional de un cuerpo es igual a la masa de un patrón de densidad igual a 8.000 kg/m3 que equilibra en el aire a dicho cuerpo en condiciones convencionalmente escogidas: temperatura del aire igual a 20 °C y densidad del aire igual a 0,0012 g/cm3

Esta definición es fundamental para un comercio internacional sin controversias sobre pesajes realizados bajo distintas condiciones de densidad del aire y densidad de los objetos. Si se pretendiera que las balanzas midan masa, sería necesario contar con patrones de masa de la misma densidad que los objetos cuya masa interese determinar, lo que no es práctico y es la razón por la que se definió la Masa Convencional, la cual es la magnitud que miden las balanzas con mayor exactitud que masa.

Véase también

Referencias

  1. La masa en cnice.mec.es
  2. Michio Kaku, El Universo de Einstein, p. 76.
  3. MacMasters, D.M. (1964). Gran Enciclopedia del Mundo. Bilbao: Durvan, S.A. de Ediciones. B1.-1.021-1964. 

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?
Sinónimos:

Mira otros diccionarios:

  • masa — (Del lat. massa). 1. f. Magnitud física que expresa la cantidad de materia que contiene un cuerpo. Su unidad en el Sistema Internacional es el kilogramo (kg). 2. Mezcla que proviene de la incorporación de un líquido a una materia pulverizada, de… …   Diccionario de la lengua española

  • masa — sustantivo femenino 1. (no contable) Mezcla de harina, agua y otros ingredientes, como levadura, sal o azúcar que se emplea en la elaboración del pan y los productos de repostería: Saca la masa del horno. 2. (no contable) Mezcla espesa, blanda y… …   Diccionario Salamanca de la Lengua Española

  • masa — {{/stl 13}}{{stl 8}}rz. ż Ia, CMc. masasie {{/stl 8}}{{stl 20}} {{/stl 20}}{{stl 12}}1. {{/stl 12}}{{stl 7}} substancja bezkształtna, półpłynna, stosunkowo gęsta, powstała zwykle ze zmieszania (się) rozdrobnionych składników, przypominająca… …   Langenscheidt Polski wyjaśnień

  • masa — masà sf. (4) 1. J žr. masė 3: Prie tos sienelės statau paruoštą stiklą, užteptą tam tikra masa Mš. Šerdis yra minkšta vilninė ir kempininė masa S.Dauk. Pataisius tokią masą, reik pirmu patiekti medį dėl jos priėmimo S.Dauk. Kas tę per… …   Dictionary of the Lithuanian Language

  • masa — agregado de células unidas entre sí, como las que se observan en los tumores. CIE 10 [véase http://www.iqb.es/patologia/masa.htm] Diccionario ilustrado de Términos Médicos.. Alvaro Galiano. 2010. masa 1. propiedad …   Diccionario médico

  • masa — masa, coger con las manos en la masa ► mano, ► con las manos en la masa …   Diccionario del Argot "El Sohez"

  • mąsa — mąsà sf. (4) 1. plėvė ant skysčio, krėna: Mąsa antsideda ant putrai belaikant Dr. | Nugreibk nu alaus mąsas (putas) Užv. 2. S.Dauk pelėsiai, mūsai: Ant kopūstų, batvinių kubile mąsų̃ daug J. Mąsà užsidėjusi par gerą pirštą Rdn. Kubile daugiau… …   Dictionary of the Lithuanian Language

  • maşa — maşá vb., ind. prez. 1 sg. maşéz, 3 sg. şi pl. maşeáză Trimis de siveco, 08.11.2008. Sursa: Dicţionar ortografic  MAŞÁ vb. tr. (rar) a pronunţa cuvintele într o manieră confuză. (< fr. mâcher) …   Dicționar Român

  • Masa — Женское и (мужское имя) Прямолинейный (человек) Японские имена. Словарь значений …   Словарь личных имен

  • Mäsa — (M. Forsk.), Pflanzengattung, gehört zu Baeobotrys …   Pierer's Universal-Lexikon

  • masa — ou massa n. m. Langue et groupe de langues afro asiatiques du groupe tchadique parlées des deux côtés de la frontière tchado camerounaise, sur le Logone, par env. 130 000 personnes …   Encyclopédie Universelle

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”