- Serie de Taylor
-
En matemáticas, una serie de Taylor de una función f(x) infinitamente derivable (real o compleja) definida en un intervalo abierto (a-r, a+r) se define como la siguiente suma:
Aquí, n! es el factorial de n y f (n)(a) indica la n-ésima derivada de f en el punto a.
Si esta serie converge para todo x perteneciente al intervalo (a-r, a+r) y la suma es igual a f(x), entonces la función f(x) se llama analítica. Para comprobar si la serie converge a f(x), se suele utilizar una estimación del resto del teorema de Taylor. Una función es analítica si y solo si se puede representar con una serie de potencias; los coeficientes de esa serie son necesariamente los determinados en la fórmula de la serie de Taylor.
Si a = 0, a la serie se le llama serie de Maclaurin.
Esta representación tiene tres ventajas importantes:
- La derivación e integración de una de estas series se puede realizar término a término, que resultan operaciones triviales.
- Se puede utilizar para calcular valores aproximados de la función.
- Es posible demostrar que, si es viable la transformación de una función a una serie de Taylor, es la óptima aproximación posible.
Algunas funciones no se pueden escribir como serie de Taylor porque tienen alguna singularidad. En estos casos normalmente se puede conseguir un desarrollo en serie utilizando potencias negativas de x (véase Serie de Laurent. Por ejemplo f(x) = exp(−1/x²) se puede desarrollar como serie de Laurent.
Contenido
Definición
La serie de Taylor de una función f de números reales o complejos que es infinitamente diferenciable en un entorno de números reales o complejos a, es la serie de potencias:
que puede ser escrito de una manera más compacta como
donde n! es el factorial de n y f (n)(a) denota la n-ésima derivada de f en el punto a; la derivada cero de f es definida como la propia f y (x − a)0 y 0! son ambos definidos como uno.
Historia
El filósofo eleata Zenón de Elea consideró el problema de sumar una serie infinita para lograr un resultado finito, pero lo descartó por considerarlo imposible: el resultado fueron las paradojas de Zenón. Posteriormente, Aristóteles propuso una resolución filosófica a la paradoja, pero el contenido matemático de esta no quedó resuelto hasta que lo retomaron Demócrito y después Arquímedes. Fue a través del método exhaustivo de Arquímedes que un número infinito de subdivisiones geométricas progresivas podían alcanzar un resultado trigonométrico finito.[1] Independientemente, Liu Hui utilizó un método similar cientos de años después.[2]
En el siglo XIV, los primeros ejemplos del uso de series de Taylor y métodos similares fueron dados por Madhava de Sangamagrama.[3] A pesar de que hoy en día ningún registro de su trabajo ha sobrevivido a los años, escritos de matemáticos hindúes posteriores sugieren que él encontró un número de casos especiales de la serie de Taylor, incluidos aquellos para las funciones trigonométricas del seno, coseno, tangente y arcotangente.
En el siglo XVII, James Gregory también trabajó en esta área y publicó varias series de Maclaurin. Pero recién en 1715 se presentó una forma general para construir estas series para todas las funciones para las que existe y fue presentado por Brook Taylor, de quién recibe su nombre.
Las series de Maclaurin fueron nombradas así por Colin Maclaurin, un profesor de Edinburgo, quién publicó el caso especial de las series de Taylor en el siglo XVIII.
Series de Maclaurin (Taylor alrededor de 0) notables
A continuación se enumeran algunas series de Taylor de funciones básicas. Todos los desarrollos son también válidos para valores complejos de x.
Función exponencial y logaritmo natural
Serie geométrica
Teorema del binomio
para
y cualquier complejo
Funciones trigonométricas
-
- Donde Bs son los Números de Bernoulli.
Funciones hiperbólicas
Función W de Lambert
Los números Bk que aparecen en los desarrollos de tan(x) y tanh(x) son Números de Bernoulli. Los valores C(α,n) del desarrollo del binomio son los coeficientes binomiales. Los Ek del desarrollo de sec(x) son Números de Euler.
Varias variables
La serie de Taylor se puede generalizar a funciones de d variables:
donde es un coeficiente multinomial. Como ejemplo, para una función de 2 variables, x e y, la serie de Taylor de segundo orden en un entorno del punto (a, b) es:
Un polinomio de Taylor de segundo grado puede ser escrito de manera compacta así:
donde es el gradiente y es la matriz hessiana. Otra forma:
Aplicaciones
Además de la obvia aplicación de utilizar funciones polinómicas en lugar de funciones de mayor complejidad para analizar el comportamiento local de una función, las series de Taylor tienen muchas otras aplicaciones.
Algunas de ellas son: análisis de límites y estudios paramétricos de los mismos, estimación de números irracionales acotando su error, teorema de L'Hopital para la resolución de límites indeterminados, estudio de puntos estacionarios en funciones (máximos o mínimos relativos o puntos sillas de tendencia estrictamente creciente o decreciente), estimación de integrales, determinación de convergencia y suma de algunas series importantes, estudio de orden y parámetro principal de infinitésimos, etc.
Véase también
Referencias
- ↑ Kline, M. (1990) Mathematical Thought from Ancient to Modern Times. Oxford University Press. pp. 35-37.
- ↑ Boyer, C. and Merzbach, U. (1991) A History of Mathematics. John Wiley and Sons. pp. 202-203.
- ↑ «Neither Newton nor Leibniz - The Pre-History of Calculus and Celestial Mechanics in Medieval Kerala». MAT 314. Canisius College.
Enlaces externos
- Weisstein, Eric W. «Serie de Taylor» (en inglés). MathWorld. Wolfram Research.
- Madhava of Sangamagramma
- Taylor Series Representation Module by John H. Mathews
- "Discussion of the Parker-Sochacki Method"
- Another Taylor visualisation - where you can choose the point of the approximation and the number of derivatives
- Taylor series revisited for numerical methods at Numerical Methods for the STEM Undergraduate
- Cinderella 2: Taylor expansion
- Taylor series
- Inverse trigonometric functions Taylor series
Categoría:- Series matemáticas
Wikimedia foundation. 2010.