Galileo Galilei

Galileo Galilei
Para otros usos de este término, véase Galileo (desambiguación).
Galileo Galilei
Galileo by leoni.jpg
Galileo por Leoni
Nacimiento 15 de febrero de 1564[1]
Pisa
Fallecimiento 8 de enero de 1642 (77 años)[1]
Archetri (Florencia)[1]
Residencia Gran Ducado de Toscana (República de Florencia)
Nacionalidad Súbdito del Gran Ducado de Toscana
Campo astronomía, física, matemática.
Instituciones Universidad de Pisa, Universidad de Padua
Alma máter Universidad de Pisa
Supervisor doctoral Ostilio Ricci
Conocido por Fundamentar las bases de la mecánica moderna: cinemática, dinámica. observaciones telescópicas astronómicas, heliocentrismo.
Firma
Galileo Signature.svg

Ha sido considerado como el «padre de la astronomía moderna»,[2] el «padre de la física moderna»[3] y el «padre de la ciencia».[3]
Galileo Galilei.
Retrato de Galileo Galilei pintado por Sustermans Justus en 1636.

Galileo Galilei (Pisa, 15 de febrero de 1564[4] - Florencia, 8 de enero de 1642[1] [5] ), fue un astrónomo, filósofo, matemático y físico italiano que estuvo relacionado estrechamente con la revolución científica. Eminente hombre del Renacimiento, mostró interés por casi todas las ciencias y artes (música, literatura, pintura). Sus logros incluyen la mejora del telescopio, gran variedad de observaciones astronómicas, la primera ley del movimiento y un apoyo determinante para el copernicanismo. Ha sido considerado como el «padre de la astronomía moderna», el «padre de la física moderna»[6] y el «padre de la ciencia».

Su trabajo experimental es considerado complementario a los escritos de Francis Bacon en el establecimiento del moderno método científico y su carrera científica es complementaria a la de Johannes Kepler. Su trabajo se considera una ruptura de las teorías asentadas de la física aristotélica y su enfrentamiento con la Inquisición romana de la Iglesia Católica Romana suele presentarse como el mejor ejemplo de conflicto entre religión y ciencia en la sociedad occidental.[7]

Contenido

Nacimiento e infancia

Galileo, que nació en Pisa cuando ésta pertenecía al Gran Ducado de Toscana, fue el mayor de sus siete hermanos y fue hijo de un músico y matemático florentino llamado Vincenzo Galilei, que quería que su hijo mayor estudiase medicina. Los Galilei, que eran una familia de la baja nobleza y se ganaban la vida gracias al comercio, se encargaron de la educación de Galileo hasta los 10 años, edad a la que pasó a cargo de un vecino religioso llamado Jacobo Borhini cuando sus padres se trasladaron a Florencia.[1] Por mediación de este, el pequeño Galileo accedió al convento de Santa María de Vallombrosa (Florencia) y recibió una formación más religiosa que le llevó a plantearse unirse a la vida religiosa, algo que a su padre le disgustó. Por eso, Vincenzo Galileo -un señor bastante escéptico- aprovechó una infección en el ojo que padecía su hijo para sacarle del convento alegando "falta de cuidados".[8] Dos años más tarde, Galileo fue inscrito por su padre en la Universidad de Pisa, donde estudió Medicina, Filosofía y Matemáticas.[9]

El descubrimiento de su vocación

En 1583 Galileo se inicia en la matemática por medio de Ostilio Ricci, un amigo de la familia, alumno de Tartaglia. Ricci tenía la costumbre, rara en esa época, de unir la teoría a la práctica experimental.

Atraído por la obra de Euclides, sin ningún interés por la medicina y todavía menos por las disputas escolásticas y la filosofía aristotélica, Galileo reorienta sus estudios hacia las matemáticas. Desde entonces, se siente seguidor de Pitágoras, de Platón y de Arquímedes y opuesto al aristotelismo. Todavía estudiante, descubre la ley de la isocronía de los péndulos, primera etapa de lo que será el descubrimiento de una nueva ciencia: la mecánica. Dentro de la corriente humanista, redacta también un panfleto feroz contra el profesorado de su tiempo. Toda su vida, Galileo rechazará el ser comparado a los profesores de su época, lo que le supondrá numerosos enemigos.

Dos años más tarde, retorna a Florencia sin diploma, pero con grandes conocimientos y una gran curiosidad científica.

Antes del telescopio

De Florencia a Pisa (1585-1592)

Galileo comienza por demostrar muchos teoremas sobre el centro de gravedad de ciertos sólidos dentro de Theoremata circa centrum gravitatis solidum y emprende en 1586 la reconstitución de la balanza hidrostática de Arquímedes o bilancetta. Al mismo tiempo, continúa con sus estudios sobre las oscilaciones del péndulo pesante e inventa el pulsómetro. Este aparato permite ayudar a medir el pulso y suministra una escala de tiempo, que no existía aún en la época. También comienza sus estudios sobre la caída de los cuerpos.

En 1588, es invitado por la Academia Florentina a presentar dos lecciones sobre la forma, el lugar y la dimensión del Infierno de Dante.

Paralelamente a sus actividades, busca un empleo de profesor en una universidad; se encuentra entonces con grandes personajes, como el padre jesuita Christopher Clavius, excelencia de la matemática en el Colegio pontifical. Se encuentra también con el matemático Guidobaldo del Monte. Este último recomienda a Galileo con el duque Fernando I de Toscana, que lo nombra para la cátedra de matemáticas de la universidad de Pisa por 60 escudos de oro por año — una miseria. Su lección inaugural tendrá lugar el 12 de noviembre de 1589.

En 1590 y 1591, descubre la cicloide y se sirve de ella para dibujar arcos de puentes. Igualmente experimenta sobre la caída de los cuerpos y redacta su primera obra de mecánica, el De motu. La realidad es que estas «experiencias» son puestas en duda hoy por hoy y podrían ser una invención de su primer biógrafo, Vincenzo Viviani. Este volumen contiene ideas nuevas para la época, pero expone también, evidentemente los principios de la escuela aristotélica y el sistema de Ptolomeo. Galileo los enseñará durante mucho tiempo después de estar convencido de la exactitud del sistema copernicano, falto de pruebas tangibles.

La universidad de Padua (1592-1610)

En 1592 se trasladó a la Universidad de Padua y ejerció como profesor de geometría, mecánica y astronomía hasta 1610.[10] La marcha de Pisa se explica por diferencias con uno de los hijos del gran duque Fernando I de Toscana.

Padua pertenecía a la poderosa República de Venecia, lo que dio a Galileo una gran libertad intelectual, pues la Inquisición no era poderosa allí. Incluso si Giordano Bruno había sido entregado por los patricios de la república a la Inquisición, Galileo podía efectuar sus investigaciones sin muchas preocupaciones.

Enseña Mecánica Aplicada, Matemática, Astronomía y Arquitectura militar.[11] Después de la muerte de su padre en 1591, Galileo debe ayudar a cubrir las necesidades de la familia. Se pone a dar numerosas clases particulares a los estudiantes ricos, a los que aloja en su casa. Pero no es un buen gestor y sólo la ayuda financiera de sus protectores y amigos le permiten equilibrar sus cuentas.

En 1599, Galileo participa en la fundación de la Accademia dei Ricovrati con el abad Federico Cornaro.

El mismo año, Galileo se encuentra con Marina Gamba, una joven veneciana con la cual mantendrá una relación hasta 1610 (no se casan ni viven bajo el mismo techo). En 1600, nace su primera hija Virginia, seguida por su hermana Livia en 1601, luego un hijo, Vincenzo, en 1606. Después de la separación (no conflictiva) de la pareja, Galileo se encarga de sus hijos y envía sus hijas a un convento, ya que el abuelo las sentencia de "incasables" (que no se pueden casar) al ser ilegítimas.[12] En cambio el varón Vincenzo será legitimado y se casará con Sestilia Bocchineri.[13]

El año 1604

1604 es un año mirabilis para Galileo:

  • En julio, prueba su bomba de agua en un jardín de Padua;
  • En octubre, descubre la ley del movimiento uniformemente acelerado, que él asocia a una ley de velocidades erróneas;
  • En diciembre, comienza sus observaciones de una nova conocida al menos desde el 10 de octubre. Consagra 5 lecciones sobre el tema el mes siguiente, y en febrero de 1605 publica Dialogo de Cecco di Ronchitti in Perpuosito de la Stella Nova junto con D. Girolamo Spinelli. Aunque la aparición de una nueva estrella, y su desaparición repentina entra en total contradicción con la teoría establecida de la inalterabilidad de los cielos, Galileo continúa todavía como aristotélico en público, pero en privado ya es copernicano. Espera la prueba irrefutable sobre la cual apoyarse para denunciar el aristotelismo.

Retomando sus estudios sobre el movimiento, Galileo «muestra» que los proyectiles siguen, en el vacío, trayectorias parabólicas. Hará falta la gravitación universal de Newton, para generalizar a los misiles balísticos, donde las trayectorias son en efecto elípticas.

De 1606 a 1609

En 1606, Galileo construye su primer termoscopio, primer aparato de la historia que permite comparar de manera objetiva el nivel de calor y de frío. Ese mismo año, Galileo y dos de sus amigos caen enfermos el mismo día de una misma enfermedad infecciosa. Sólo sobrevive Galileo, que permanecerá lisiado de reumatismo por el resto de sus días.

En los dos años que siguen, el sabio estudia las estructuras de los imanes. Todavía se pueden contemplar sus trabajos en el museo de historia de Florencia.

El telescopio y sus consecuencias

Invención del telescopio

Galileo enseñando al dogo de Venecia el uso del telescopio
Fresco de Giuseppe Bertini (1825-1898).

En mayo de 1609, Galileo recibe de París una carta del francés Jacques Badovere, uno de sus antiguos alumnos, quien le confirma un rumor insistente: la existencia de un telescopio que permite ver los objetos lejanos.[14] Fabricado en Holanda, este telescopio habría permitido ya ver estrellas invisibles a simple vista. Con esta única descripción, Galileo, que ya no da cursos a Cosme II de Médicis, construye su primer telescopio. Al contrario que el telescopio holandés, éste no deforma los objetos y los aumenta 6 veces, o sea el doble que su oponente. También es el único de la época que consigue obtener una imagen derecha gracias a la utilización de una lente divergente en el ocular.[cita requerida] Este invento marca un giro en la vida de Galileo.

El 21 de agosto, apenas terminado su segundo telescopio (aumenta ocho o nueve veces), lo presenta al Senado de Venecia. La demostración tiene lugar en la cima del Campanile de la plaza de San Marco. Los espectadores quedan entusiasmados: ante sus ojos, Murano, situado a 2 km y medio, parece estar a 300 m solamente.[cita requerida]

Galileo ofrece su instrumento y lega los derechos a la República de Venecia, muy interesada por las aplicaciones militares del objeto. En recompensa, es confirmado de por vida en su puesto de Padua y sus emolumentos se duplican. Se libera por fin de las dificultades financieras.[cita requerida]

Sin embargo, contrario a sus alegaciones, no dominaba la teoría óptica y los instrumentos fabricados por él son de calidad muy variable. Algunos telescopios son prácticamente inutilizables (al menos en observación astronómica). En abril de 1610, en Bolonia, por ejemplo, la demostración del telescopio es desastrosa, como así lo informa Martin Horky en una carta a Kepler.[cita requerida]

Galileo reconoció en marzo de 1610 que, entre más de 60 telescopios que había construido, solamente algunos eran adecuados. Numerosos testimonios, incluido el de Kepler, confirman la mediocridad de los primeros instrumentos.[cita requerida]

La observación de la Luna

Ilustración elaborada por Galileo sobre las fases lunares.

Durante el otoño, Galileo continuó desarrollando su telescopio. En noviembre, fabrica un instrumento que aumenta veinte veces. Emplea tiempo para volver su telescopio hacia el cielo. Rápidamente, observando las fases de la Luna, descubre que este astro no es perfecto como lo quería la teoría aristotélica. La física aristotélica, que poseía autoridad en esa época, distinguía dos mundos:

  • El mundo «sublunar», que comprende la Tierra y todo lo que se encuentra entre la Tierra y la Luna; en este mundo todo es imperfecto y cambiante;
  • El mundo «supralunar», que comienza en la Luna y se extiende más allá. En esta zona, no existen más que formas geométricas perfectas (esferas) y movimientos regulares inmutables (circulares).

Galileo, por su parte, observó una zona transitoria entre la sombra y la luz, el terminador, que no era para nada regular, lo que por consiguiente invalidaba la teoría aristotélica y afirma la existencia de montañas en la Luna. Galileo incluso estima su altura en 7000 metros, más que la montaña más alta conocida en la época. Hay que decir que los medios técnicos de la época no permitían conocer la altitud de las montañas terrestres sin fantasías.[cita requerida] Cuando Galileo publica su Sidereus Nuncius piensa que las montañas lunares son más elevadas que las de la Tierra, si bien en realidad son equivalentes.[cita requerida]

La cabeza pensando en las estrellas

En pocas semanas, descubrirá la naturaleza de la Vía láctea, cuenta las estrellas de la constelación de Orión y constata que ciertas estrellas visibles a simple vista son, en verdad, cúmulos de estrellas. Galileo observa los anillos de Saturno pero no los identifica como tales sino como extraños 'apéndices' (como dos asas), no será hasta medio siglo más tarde cuando Huygens utilizando telescopios más perfectos, pueda observar la verdadera forma de los anillos. Estudia igualmente las manchas solares.[15]

El 7 de enero de 1610, Galileo hace un descubrimiento capital: remarca 3 estrellas pequeñas en la periferia de Júpiter.[16] Después de varias noches de observación, descubre que son cuatro y que giran alrededor del planeta. Se trata de los satélites de Júpiter llamados hoy satélites galileanos: Calixto, Europa, Ganimedes e Io. A fin de protegerse de la necesidad y sin duda deseoso de retornar a Florencia, Galileo llamará a estos satélites por algún tiempo los «astros mediciens» I, II, III y IV,[17] en honor de Cosme II de Médicis, su antiguo alumno y gran duque de Toscana. Galileo no ha dudado entre Cósmica sidera y Medicea sidera. El juego de palabras entre cósmica y Cosme es evidentemente voluntario y es sólo después de la primera impresión que retiene la segunda denominación (el nombre actual de estos satélites se debe sin embargo al astrónomo Simon Marius, quien los bautizó de esta manera a sugerencia de Johannes Kepler, si bien durante dos siglos se empleó la nomenclatura de Galileo).[17]

El 4 de marzo de 1610, Galileo publica en Florencia sus descubrimientos dentro de El mensajero de las estrellas (Sidereus Nuncius), resultado de sus primeras observaciones estelares.

Para él, Júpiter y sus satélites son un modelo del Sistema Solar. Gracias a ellos, piensa poder demostrar que las órbitas de cristal de Aristóteles no existen y que todos los cuerpos celestes no giran alrededor de la Tierra. Es un golpe muy duro a los aristotélicos. Él corrige también a ciertos copernicanos que pretenden que todos los cuerpos celestes giran alrededor del Sol.

El 10 de abril, muestra estos astros a la corte de Toscana. Es un triunfo. El mismo mes, da tres cursos sobre el tema en Padua. Siempre en abril, Johannes Kepler ofrece su apoyo a Galileo. El astrónomo alemán no confirmará verdaderamente este descubrimiento — pero con entusiasmo — hasta septiembre, gracias a una lente ofrecida por Galileo en persona.[cita requerida]

Observaciones en Florencia, presentación en Roma

La casa florentina de Galileo.

El 10 de julio de 1610, Galileo deja Venecia para trasladarse a Florencia.

A pesar de los consejos de sus amigos Sarpi y Sagredo, que temen que su libertad sea restringida, él ha, en efecto, aceptado el puesto de Primer Matemático de la Universidad de Pisa (sin carga de cursos, ni obligación de residencia) y aquél de Primer Matemático y Primer Filósofo del gran duque de Toscana.

El 25 de julio de 1610, Galileo orienta su telescopio hacia Saturno y descubre su extraña apariencia. Serán necesarios 50 años e instrumentos más poderosos para que Christiaan Huygens comprenda la naturaleza de los anillos de Saturno.

El mes siguiente, Galileo encuentra una manera de observar el Sol en el telescopio y descubre las manchas solares. Les da una explicación satisfactoria.

En septiembre de 1610, prosiguiendo con sus observaciones, descubre las fases de Venus. Para él, es una nueva prueba de la verdad del sistema copernicano, pues es fácil de interpretar este fenómeno gracias a la hipótesis heliocéntrica, puesto que es mucho más difícil de hacerlo basándose en la hipótesis geocéntrica.

Fue invitado el 29 de marzo de 1611 por el cardenal Maffeo Barberini (futuro Urbano VIII) a presentar sus descubrimientos al Colegio pontifical de Roma y en la joven Academia de los Linces. Galileo permanecerá dentro de la capital pontifical un mes completo, durante el cual recibe todos los honores. La Academia de los Linces le reserva un recibimiento entusiasta y le admite como su sexto miembro. Desde ese momento, el lince de la academia adornará el frontispicio de todas las publicaciones de Galileo.[18]

El 24 de abril de 1611, el Colegio Romano, compuesto de jesuitas de los cuales Christopher Clavius es el miembro más eminente, confirma al cardenal Belarmino que las observaciones de Galileo son exactas. No obstante, los sabios se guardan bien de confirmar o de denegar las conclusiones hechas por el florentino.

Galileo retorna a Florencia el 4 de junio.

Pruebas del Sistema Heliocéntrico presentadas por Galileo

Según Bertrand Russell,[19] el conflicto entre Galileo y la Iglesia Católica fue un conflicto entre el Razonamiento inductivo y el Razonamiento deductivo. La inducción basada en la observación de la realidad, propia del método científico que Galileo usó por primera vez, ofreciendo pruebas experimentales de sus afirmaciones, y publicando los resultados para que pudiesen ser repetidas, frente a la deducción, a partir en última instancia de argumentos basados en la autoridad, bien de filósofos como Aristóteles o de las Sagradas escrituras. Así, en relación a su defensa de la Teoría heliocéntrica, Galileo siempre se basó en datos extraídos de observaciones experimentales que demostraban la validez de sus argumentos. En resumen, y a pesar de que, en ocasiones, se sostiene que Galileo no demostró el movimiento de la Tierra, las pruebas de carácter experimental, publicadas por él mismo de su argumentación son las siguientes:

  • Montañas en la Luna. Fue el primer descubrimiento de Galileo con ayuda del telescopio, publicado en el Sidereus Nuncius en 1609. Con él refuta la tesis aristotélica de que los cielos son perfectos, y en particular la Luna una esfera lisa e inmutable. Frente a eso, Galileo presenta numerosos dibujos de sus observaciones, e incluso estimaciones de la altura de montañas, si bien errados por realizar estimaciones incorrectas de la distancia de la Luna.[20]
  • Nuevas estrellas. Fue el segundo descubrimiento de Galileo, también publicado en el Sidereus Nuncius. Observó que el número de estrellas visibles con el telescopio se duplicaba. Además, no aumentaban de tamaño, cosa que sí ocurría con los planetas, el Sol y la Luna. Esta imposibilidad de aumentar el tamaño era una prueba de la hipótesis de Copérnico sobre la existencia de un enorme hueco entre Saturno y las estrellas fijas. Esta prueba refutaba el mejor argumento a favor de la Teoría geocéntrica, que es que, de ser cierta la teoría copernicana, debería observarse la paralaje, o diferencia de posiciones de las estrellas dependiendo de lugar de la Tierra en su órbita. Así, debido a la enorme lejanía de las mismas en relación al tamaño de la órbita no era posible apreciar dicha paralaje.[21]
  • Satélites de Júpiter. Probablemente el descubrimiento más famoso de Galileo. Lo realizó el 7 de enero de 1610,[21] y provocó una conmoción en toda Europa. Cristóbal Clavio, astrónomo del Colegio Romano de los jesuitas, afirmó: “Todo el sistema de los cielos ha quedado destruido y debe arreglarse”.[22] Era una importante prueba de que no todos los cuerpos celestes giraban en torno a La Tierra, pues ahí había cuatro planetas (en la concepción de planetas que entonces se concebía, que incluía la Luna y el Sol) que lo hacían en torno a Júpiter.
  • Manchas solares (primera prueba). Otro descubrimiento que refutaba la perfección de los cielos fue la observación de manchas en el Sol que tuvo lugar a finales de 1610 en Roma, si bien demoró su publicación hasta 1612.[23] El jesuita Cristopher Shcneider, bajo el pseudónimo de Padre Apelles, se atribuye su descubrimiento e inicia una agria polémica argumentando que son planetoides que están entre el Sol y la Tierra. Por el contrario, Galileo demuestra, con la ayuda de la teoría matemática de los versenos que están en la superficie del Sol. Además, hace otro importante descubrimiento al mostrar que el Sol está en rotación, lo que sugiere que también la Tierra podría estarlo.[20]
Predicciones sobre la observación de Venus.
  • Las fases de Venus. Esta prueba es un magnífico ejemplo de aplicación del método científico, que Galileo usó por primera vez. La observación la hizo en 1610, aunque demoró su publicación hasta El Ensayador, aparecido en 1623, si bien para asegurar su autoría hizo circular un criptograma, anunciándolo de forma cifrada. Observó las fases, junto a una variación de tamaño, que son sólo compatibles con el hecho de que Venus gire alrededor del Sol, ya que presenta su menor tamaño cuando se encuentra en fase llena y el mayor, cuando se encuentra en la nueva; es decir, cuando está entre el Sol y la Tierra. Esta prueba refuta completamente el sistema de Ptolomeo, que se volvió insostenible. A los jesuitas del Colegio Romano sólo les quedaba la opción de aceptar el sistema copernicano o buscar otra alternativa, lo que hicieron refugiándose en el sistema de Tycho Brahe, dándole una aceptación que hasta entonces nunca había tenido.[24]
Argumento de las mareas.
  • Argumento de las mareas. Presentada en la cuarta jornada del Diálogos sobre los dos máximos sistemas del mundo. Es un argumento brillante y propio del genio de Galileo, sin embargo, es el único de los que presenta que estaba equivocado. Según Galileo, la rotación de la Tierra, al moverse ésta en su traslación alrededor del Sol hace que los puntos situados en la superficie de la Tierra sufran aceleraciones y deceleraciones cada 12 horas, que serían las causantes de las mareas. En esencia, el argumento es correcto, y esta fuerza existe en realidad, si bien su intensidad es muchísimo menor que la que Galileo calcula, y no es la causa de las mareas. El error proviene del desconocimiento de datos importantes como la distancia al Sol y la velocidad de la Tierra. Si bien estaba equivocado, Galileo desacreditó completamente la teoría del origen lunar de estas fuerzas por falta de explicación de su naturaleza, y del problema de explicación de la marea alta cuando la Luna está en sentido contrario, pues alega que la fuerza sería atractiva y repulsiva a la vez. Sería necesario esperar hasta Newton para resolver este problema, no sólo explicando el origen de la fuerza, sino también el cálculo diferencial para explicar el doble abultamiento. Pero, aún equivocada, situada en su contexto, la tesis de Galileo presentaba menos problemas y era más plausible en su explicación de las mareas.[25]
  • Manchas solares (Segunda prueba). Nuevamente, en su gran obra, el diálogo sobre los sistemas del mundo, Galileo retoma el argumento de las manchas solares, convirtiéndolo en un poderoso argumento contra el sistema de Tycho Brahe, el único refugio que quedaba a los geocentristas. Galileo presenta la observación de que el eje de rotación del Sol está inclinado, lo que hace que la rotación de las manchas solares presente una variación estacional, un “bamboleo” en el giro de las mismas. Si bien los movimientos de las manchas se pueden atribuir al Sol o a la Tierra, pues geométricamente esto es equivalente, resulta que no es así físicamente, pues es necesario tener en cuenta las fuerzas que los producen. Si es la Tierra la que se mueve, Galileo indica que basta una explicación con movimientos inerciales: la Tierra en traslación, y el Sol en rotación. Por el contrario, si sólo se mueve el Sol, es necesario que éste esté realizando dos movimientos distintos a la vez, en torno también a dos ejes distintos, generados por motores sin ninguna plausabilidad física. Este argumento vuelve a ser una nueva prueba, junto a las fases de Venus, de carácter positivo y experimental que muestra el movimiento de la Tierra.[26]

Los enemigos de Galileo y la denuncia ante el Santo Oficio (Inquisición de Roma)

La oposición se organiza

Galileo parece ir de triunfo en triunfo y convence a todo el mundo. Por tanto, los partidarios de la teoría geocéntrica se convierten en enemigos encarnizados y los ataques contra él comienzan con la aparición de Sidereus Nuncius. Ellos no pueden permitirse el perder la afrenta y no quieren ver su ciencia puesta en cuestión.

Además, los métodos de Galileo, basados en la observación y la experiencia en vez de la autoridad de los partidarios de las teorías geocéntricas (que se apoyan sobre el prestigio de Aristóteles), están en oposición completa con los suyos, hasta tal punto que Galileo rechaza compararse con ellos.

Al principio, solo se tratan de escaramuzas. Pero Sagredo escribe a Galileo, recién llegado a Florencia: «El poder y la generosidad de vuestro príncipe [el duque de Toscana] permiten esperar que él sepa reconocer vuestra dedicación y vuestro mérito; pero en los mares agitados actuales, ¿quién puede evitar de ser, yo no diría hundido, pero sí al menos duramente agitado por los vientos furiosos de los celos?».[cita requerida]

La primera flecha viene de Martin Horky, discípulo del profesor Magini y enemigo de Galileo. Este asistente publica en junio de 1610, sin consultar a su maestro, un panfleto contra el Sidereus Nuncius. Exceptuando los ataques personales, su argumento principal es el siguiente

«Los astrólogos han hecho sus horóscopos teniendo en cuenta todo aquello que se mueve en los cielos. Por lo tanto los astros mediceos no sirven para nada y, Dios no crea cosas inútiles, estos astros no pueden existir».[cita requerida].

Horky es ridiculizado por los seguidores de Galileo, que responden que estos astros sirven para una cosa: hacerle enfadar. Convertido en el hazmerreír de la universidad, Horky finalmente es recriminado por su maestro: Magini no tolera un fallo tan claro. En el mes de agosto, un tal Sizzi intenta el mismo tipo de ataque con el mismo género de argumentos, sin ningún éxito.

Una vez que las observaciones de Galileo fueron confirmadas por el Colegio Romano, los ataques cambiaron de naturaleza. Ludovico Delle Combe ataca sobre el plan religioso y se pregunta si Galileo cuenta con interpretar la Biblia para ponerla de acuerdo con sus teorías. En esta época en efecto, antes de los trabajos exegéticos del siglo XIX, un salmo (Salmo 93:1) da a entender una cosmología geocéntrica (dentro de la línea: «Tú has fijado la Tierra firme e inmóvil»)[cita requerida].

El cardenal Belarmino, que hizo quemar a Giordano Bruno, ordena que la Inquisición realice una investigación discreta sobre Galileo a partir de junio de 1611.

Los ataques se hacen más violentos

Galileo ante el Santo Oficio por Joseph-Nicolas Robert-Fleury.

Galileo, de retorno a Florencia, es inatacable desde el punto de vista astronómico. Sus adversarios van entonces a criticar su teoría de los cuerpos flotantes. Galileo pretende que el hielo flota porque es más ligero que el agua, mientras que los aristotélicos piensan que flota porque es de su naturaleza el flotar (Física cuantitativa y matemática de Galileo contra física cualitativa de Aristóteles). El ataque tendrá lugar durante un almuerzo en la mesa de Cosme II en el mes de septiembre de 1611.

Galileo se opone a los profesores de Pisa y en especial al mismo Delle Combe, durante lo que se denomina la «batalla de los cuerpos flotantes». Galileo sale victorioso del intercambio. Varios meses más tarde, sacará una obra en la que se presentará su teoría.

Además de estos asuntos, Galileo continúa con sus investigaciones. Su sistema de determinación de longitudes es propuesto en España por el embajador de Toscana.

En 1612, emprende una discusión con Apelles Latens Post Tábulam (seudónimo del jesuita Cristóbal Scheiner), un astrónomo alemán, sobre el tema de las manchas solares. Apelles defiende la incorruptibilidad del Sol argumentando que las manchas son en realidad conjuntos de estrellas entre el Sol y la Tierra. Galileo demuestra que las manchas están sobre la superficie misma del Sol, o tan próximas que no se puede medir su altitud. La Academia de los Linces publicará esta correspondencia el 22 de marzo de 1613 con el título de 'Istoria e dimostrazioni intorno alle marchie solari e loro accidenti. Scheiner terminará por adherirse a la tesis galileana.

El 2 de noviembre de 1612, las querellas reaparecen. El dominico Niccolo Lorini, profesor de historia eclesiástica en Florencia, pronuncia un sermón resueltamente opuesto a la teoría de la rotación de la Tierra. Sermón sin consecuencias particulares, pero que marca los comienzos de los ataques religiosos. Los opositores utilizan el pasaje bíblico en el Libro de Josué (Josué 10:12-14) en el cual Josué detiene el movimiento del Sol y de la Luna, como arma teológica contra Galileo.

En diciembre de 1613, el profesor Benedetto Castelli, antiguo alumno de Galileo y uno de sus colegas en Pisa, es encargado por la duquesa Cristina de Lorena de probar la ortodoxia de la doctrina copernicana. Galileo vendrá en ayuda de su discípulo escribiéndole una carta el 21 de diciembre de 1613 (traducida como Galileo, diálogos y cartas selectas) sobre la relación entre ciencia y religión. La gran duquesa se tranquiliza, pero la controversia no se debilita.

Galileo mientras tanto continúa con sus trabajos. Del 12 al 15 de noviembre, recibe a Jean Tarde, a quien presenta su microscopio y sus trabajos de astronomía.

El 20 de diciembre, el padre Caccini ataca muy violentamente a Galileo en la iglesia Santa Maria Novella. El 6 de enero de 1614 un copernicano, el carmelita Paolo Foscarini, publica una carta tratando positivamente la opinión de los pitagóricos y de Copérnico sobre la movilidad de la Tierra. Él percibe el sistema copernicano como una realidad física. La controversia toma una amplitud tal que el cardenal Belarmino debe intervenir el 12 de abril. Éste escribe una carta a Foscarini donde condena sin equívocos la tesis heliocéntrica en ausencia de refutación concluyente del sistema geocéntrico. En dicha carta escribe:

Y no se puede responder que esto no es materia de fe, porque si no es materia de fe ex parti obiecti (respecto al objeto) es materia de fe ex parte dicentis (por quien lo dice). Y tan herético sería como quien dijera que Abraham no tuvo dos hijos y Jacob doce, o quien dijera que Cristo no nació de Virgen.- Cardenal Belarmino, Carta a Foscarini. Opere XII, pp. 171-172[27]

En 1614, conoce a Juan Bautista Baliani, físico genovés, que será su amigo y correspondiente durante largos años.


Como reacción, Galileo escribe a Cristina de Lorena una carta extensa en la cual desarrolla admirablemente sus argumentos en favor de la ortodoxia del sistema copernicano. Esta carta es, también, muy difundida. Esta carta, escrita hacia abril de 1615, es una pieza esencial del dossier. Ahí se ven los pasajes de las escrituras que poseen problemas desde un punto de vista cosmológico.

A pesar de ello, Galileo es obligado a presentarse en Roma para defenderse contra las calumnias y sobre todo para tratar de evitar una prohibición de la doctrina copernicana. Pero le falta la prueba irrefutable de la rotación de la Tierra para apoyar sus requerimientos. Su intervención llega demasiado tarde: Lorini, por carta de denuncia, ya había avisado a Roma de la llegada de Galileo y el Santo Oficio ya había comenzado la instrucción del caso.

El 8 de febrero de 1616, Galileo envía su teoría de las mareas (Discorso del Flusso e Reflusso) al cardenal Orsini. Esta teoría (a la cual se le ha reprochado durante mucho tiempo de estar en contradicción con el principio de la inercia enunciado por el mismo Galileo, y que sólo puede explicar pequeños componentes del fenómeno) pretendía demostrar que el movimiento de la Tierra producía las mareas, mientras que los astrónomos jesuitas ya postulaban con acierto que las mareas eran producidas por la atracción de la Luna.[cita requerida]

La censura de las teorías copernicanas (1616).

A pesar de pasar dos meses removiendo cielo y tierra para impedir lo inevitable, es convocado el 16 de febrero de 1616 por el Santo Oficio para el examen de las proposiciones de censura. Es una catástrofe para él. La teoría copernicana es condenada como "una insensatez, un absurdo en filosofía, y formalmente herética".[28]

El 25 de febrero y 26 de febrero de 1616, la censura es ratificada por la Inquisición y por el papa Pablo V.

Aunque no se le inquieta personalmente, se ruega a Galileo exponer su tesis presentándola como una hipótesis y no como un hecho comprobado, cosa que no hizo a pesar de que no le fue posible demostrar dicha tesis. Esta petición se extiende a todos los países católicos.

La intransigencia de Galileo, que rechaza la equivalencia de las hipótesis copernicana y de Ptolomeo, pudo haber precipitado los eventos. Un estudio del proceso por Paul Feyerabend (ver por ejemplo el Adiós a la Razón) muestra que la actitud del inquisidor (Roberto Belarmino) fue al menos tan científica como la de Galileo, siguiendo criterios modernos.

Este asunto afecta a Galileo profundamente. Sus enfermedades le van a atormentar durante los dos años siguientes y su actividad científica se reduce. Sólo retoma su estudio de la determinación de las longitudes en el mar. Sus dos hijas Arcángela y Celeste entran en órdenes religiosas.

En 1618, observa el pasaje de tres cometas, fenómeno que relanza la polémica sobre la incorruptibilidad de los cielos.

En 1619, el padre jesuita Horazio Grassi publica De tribus cometis ani 1618 disputatio astronomica. En él defiende el punto de vista de Tycho Brahe sobre las trayectorias elípticas de los cometas. Galileo responde al principio por la intermediación de su alumno Mario Guiducci que publica en junio de 1619 Discorso delle comete donde desarrolla una teoría bizarra sobre los cometas, afirmando que sólo se trataba de ilusiones ópticas, incluyendo causas de fenómenos meteorológicos. Los astrónomos jesuitas del Observatorio Vaticano decían, en cambio, que eran objetos celestes reales.

En octubre, Horazio Grassi ataca a Galileo en un panfleto más hipócrita: sobre consideraciones científicas se mezclan las insinuaciones religiosas malvadas y muy peligrosas en tiempos de la Contrarreforma.

Mientras, Galileo, animado por su amigo el cardenal Barberini y sostenido por la Academia de los Linces, responderá con ironía en Il Saggiatore. Grassi, uno de los sabios jesuitas más importantes, es ridiculizado.

Mientras tanto, Galileo ha comenzado su estudio de los satélites de Júpiter. Por culpa de dificultades técnicas se ve obligado a abandonar el cálculo de sus efemérides. Galileo se ve cubierto de honores en 1620 y 1622.

El 28 de agosto de 1620, el cardenal Mafeo Barberini envía a su amigo el poema Adulatio Perniciosa que él ha compuesto en su honor. El 20 de enero de 1621, Galileo se convierte en cónsul de la Academia florentina. El 28 de febrero, Cosme II, el protector de Galileo, muere súbitamente.

En 1622, en Fráncfort, aparece una Apología de Galileo redactada por Tommaso Campanella en 1616. Un defensor bastante poco confiable, puesto que Campanella ya está condenado por herejía.

El 6 de agosto de 1622, el cardenal Mafeo Barberini es elegido Papa bajo el nombre de Urbano VIII. El 3 de febrero de 1623 Galileo recibe la autorización para publicar su Saggiatore que dedica al nuevo Papa. La obra aparece el 20 de octubre de 1623. Gracias a las cualidades polémicas (y literarias) de la obra, se aseguró el éxito en la época. No permanece más que unos meses allí , Galileo se convierte de alguna manera en el representante de los círculos intelectuales romanos en rebelión contra el conformismo intelectual y científico impuesto por los jesuitas.

Los años siguientes son bastante tranquilos para Galileo a pesar de los ataques de los aristotélicos. Aprovecha para perfeccionar su microscopio compuesto (septiembre de 1624), pasa un mes en Roma donde es recibido numerosas veces por Urbano VIII. Este último le da la idea de su próximo libro Diálogo sobre los dos sistemas del mundo, obra que presenta de manera imparcial a la vez el sistema aristotélico y el sistema copernicano. Encarga escribirla a Galileo.

En 1626, Galileo prosigue sus investigaciones sobre la estructura del imán. También recibe la visita de Élie Dodati, que llevará las copias de sus manuscritos a París. En marzo de 1628, Galileo cae gravemente enfermo y está a punto de morir.

El año siguiente, sus adversarios intentan privarle de la asignación que recibe de la Universidad de Pisa, pero la maniobra falla.

Hasta 1631 Galileo consagra su tiempo a la escritura del Diálogo y a intentar que éste sea admitido por la censura. La obra se imprime en febrero de 1632. Los ojos de Galileo comienzan a traicionarle en marzo y abril. Las posiciones del teólogo valón Libert Froidmont (de la Universidad Católica de Lovaina) esclarecen bien todos los equívocos de la condena de Galileo.

La condena de 1633

El 21 de febrero de 1632, Galileo, protegido por el papa Urbano VIII y el gran duque de Toscana Fernando II de Médicis, publica en Florencia su diálogo de los Massimi sistemi (Diálogo sobre los principales sistemas del mundo) (Dialogo sopra i due massimi sistemi del mondo), donde se burla implícitamente del geocentrismo de Ptolomeo. El Diálogo es a la vez una revolución y un verdadero escándalo. El libro es en efecto abiertamente pro-copernicano, ridiculizando audazmente la interdicción de 1616 (que no será levantada hasta 1812: a verificar).

El Diálogo se desarrolla en Venecia durante cuatro jornadas entre tres interlocutores: Filipo Salviati, un Florentino seguidor de Copérnico, Giovan Francesco Sagredo, un veneciano ilustrado sin tomar partido, y Simplicio, un mediocre defensor de la física aristotélica, un personaje que algunos quieren ver inspirado en Urbano VIII. Pero, mientras que se le reprocha el carácter ostensiblemente peyorativo del nombre, Galileo responde que se trata de Simplicio de Cilicia. Muchos autores coinciden en que Galileo no esperaba estas reacciones ni que el Papa reaccionara posicionándose entre sus enemigos.[29]

En estos cuatro días de discusión, Galileo, aunque lo tenía prohibido por el decreto de 1616, presenta dos nuevas pruebas de carácter experimental y observacional a favor de la teoría copernicana. La basada en el movimiento de las mareas, errónea, y la basada en la rotación de las manchas solares, acertada[26] [30] y que refutaba tanto la ptolemaica (ya descartada por las fases de Venus), como la de Tycho Brahe, en cuya defensa se habían refugiado los jesuitas del Colegio Romano. Esto motivó la intervención de la Inquisición, que sólo le permitía a Galileo el presentar la teoría como mera hipótesis,[31] y no presentar pruebas a su favor.[32]

Por otra parte, Galileo tiene en Roma poderosos enemigos, fundamentalmente entre los jesuitas del Colegio Romano, especialmente Christopher Steiner y Orazio Grascci, quienes se consideraban la rama intelectual de la Iglesia, y quienes pudieron ser quienes iniciaron el rumor de que el Papa Urbano era, en realidad, el simpático pero poco brillante Simplicio. Esto fue muy perjudicial para Galileo, pues en Roma era muy conocida la enorme autoestima del Papa.[33] Por otro lado, tampoco ayudó a Galileo el escribir su citada obra en lengua vulgar, en vez de hacerlo en el idioma culto utilizado entonces entre los hombres de ciencia, el latín, pues a la Iglesia no le gustaba que las obras llegaran directamente al hombre de la calle.

El proceso realizado por la Inquisición fue irregular, pues a pesar de que el libro había pasado el filtro de los censores, se le acusaba de introducir doctrinas heréticas. Puesto que esto dejaba en mal lugar a dichos censores, la acusación oficial fue de violar la prohibición de 1616.[34]

Galileo fue requerido para presentarse en Roma, sin embargo, estaba sumamente enfermo y agotado, y ya contaba 68 años, por lo que se demoró en acudir, además de que en esos momentos existía una epidemia de peste en Italia. Aunque presentó certificados médicos alegando estas circunstancias, a finales de diciembre de 1632 fue conminado a acudir inmediatamente de grado o por fuerza.[35] Que no era voluntad suya el retrasar el viaje lo prueba el que, debido a la peste, fuera retenido por espacio de 42 días para abandonar la Toscana. Por otra parte, el trato recibido durante el proceso fue correcto, alojado en las habitaciones del palacio de la Inquisición, y recibiendo todas las atenciones que necesitaba, si bien no fue ningún trato especial distinto al resto de otras personalidades importantes y personas de su condición.[36]

El proceso comenzó con un interrogatorio el 9 de abril de 1633, donde Galileo no reconoce haber recibido expresamente ninguna orden del cardenal Bellarmino. Por otra parte, dicha orden aparece en un acta que no estaba firmada ni por el cardenal ni por el propio Galileo.[37] Con pruebas endebles es difícil realizar una condena, por lo que es conminado a confesar, con amenazas de tortura si no lo hace y promesas de un trato benevolente en caso contrario. Galileo acepta confesar, lo que lleva a cabo en una comparecencia ante el tribunal el 30 de abril. Una vez obtenida la confesión, se produce la condena el 21 de junio. Al día siguiente, en el convento romano de Santa Maria sopra Minerva, le es leída la sentencia, donde se le condena a prisión perpetua, y se le conmina a abjurar de sus ideas, cosa que hace seguidamente. Tras la abjuración el Papa conmuta la prisión por arresto domiciliario de por vida.[38]

Giuseppe Baretti afirmó que después de la abjuración Galileo dijo la famosa frase

«Eppur si muove» (y sin embargo se mueve)

pero según Stillman Drake Galileo no pronunció la famosa frase en ese momento ya que no se encontraba en situación de libertad y sin duda era desafiante hacerlo ante el tribunal de cardenales de la Inquisición.[39] Para Stillman si esa frase fue pronunciada lo fue en otro momento.

El texto de la sentencia fue difundido por doquier: en Roma el 2 de julio y en Florencia el 12 de agosto. La noticia llega a Alemania a finales de agosto, en Bélgica en septiembre. Los decretos del Santo Oficio no se publicarán jamás en Francia, pero, prudentemente, René Descartes renuncia a la publicación de su Mundo.

Muchos (entre ellos Descartes), en la época, pensaron que Galileo era la víctima de una confabulación de los jesuitas, que se vengaban así de la afrenta sufrida por Horazio Grassi en el Saggiatore.

El fin

Galileo permanece confinado en su residencia en su casa de Florencia desde diciembre de 1633 a 1638. Allí recibe algunas visitas, lo que le permitió que alguna de sus obras en curso de redacción pudiera cruzar la frontera. Estos libros aparecieron en Estrasburgo y en París en traducción latina.

Galileo Galilei, Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze, 1638 (1400x1400).png

En 1636, Luis Elzevier recibe un boceto de los Discursos sobre dos nuevas ciencias de la parte del maestro florentino. Éste es el último libro que escribirá Galileo; en él establece los fundamentos de la mecánica en tanto que ciencia y que marca así el fin de la física aristotélica. Intenta también establecer las bases de la resistencia de los materiales, con menos éxito. Terminará este libro a lo justo, puesto que el 4 de julio de 1637 pierde el uso de su ojo derecho.

El 2 de enero de 1638, Galileo pierde definitivamente la vista. Por suerte, Dino Peri ha recibido la autorización para vivir en casa de Galileo para asistirlo junto con el padre Ambrogetti que tomará nota de la sexta y última parte de los Discursos. Esta parte no aparecerá hasta 1718. La obra completa aparecerá en julio de 1638 en Leiden (Países Bajos) y en París. Será leída por las más grandes personalidades de la época. Descartes por ejemplo enviará sus observaciones a Mersenne, el editor parisino.

Galileo, entre tanto, ha recibido la autorización de instalarse cerca del mar, en su casa de San Giorgio. Permanecerá allí hasta su muerte, rodeado de sus discípulos (Viviani, Torricelli, Peri, etc.), trabajando en la astronomía y otras ciencias. A fines de 1641, Galileo trata de aplicar la oscilación del péndulo a los mecanismos del reloj.

Tumba de Galileo, en Santa-Croce, Florencia.

Unos días más tarde, el 8 de enero de 1642, Galileo muere en Arcetri a la edad de 77 años. Su cuerpo es inhumado en Florencia el 9 de enero. Un mausoleo será erigido en su honor el 13 de marzo de 1736 en la iglesia de la Santa Cruz de Florencia.

Posición de la Iglesia en los siglos siguientes

Galileo, especialmente por su obra Diálogo sobre los principales sistemas del mundo (1633), cuestionó y resquebrajó los principios sobre los que hasta ese momento habían sustentado el conocimiento e introdujo las bases del método científico que a partir de entonces se fue consolidando. En filosofía aparecerieron corrientes de pensamiento racionalista (Descartes) y empíricas (ver Francis Bacon y Robert Boyle).

Siglo XVII - La resistencia a la separación entre ciencia y teología

La teoría del heliocentrismo, suponía cuestionar que los textos bíblicos (como por ejemplo que la Tierra fuera el centro del Universo -geocentrismo-) fueran válidos para una verdadera ciencia. Las consecuencias no solo fueron para la teología y la ciencia incipiente, también se produjeron consecuencias metafísicas y ontológicas, que producirán reacciones de los científicos [cita requerida]:

Siglo XVIII - Benedicto XIV autoriza las obras sobre el heliocentrismo

El papa Benedicto XIV autoriza las obras sobre el heliocentrismo en la primera mitad del siglo XVIII, y esto en dos tiempos:

  • En 1741, ante la prueba óptica de la órbita de la Tierra, hizo que el Santo Oficio diese al impresor la primera edición de las obras completas de Galileo.
  • En 1757, las obras favorables al heliocentrismo fueron autorizadas de nuevo, por un decreto de la Congregación del Índex, que retira estas obras del Index Librorum Prohibitorum.

Siglo XX - Homenaje sin rehabilitación

A partir de Pío XII se comienza a rendir homenaje al gran sabio que era Galileo. En 1939 este Papa, en su primer discurso a la Academia Pontificia de las Ciencias, a pocos meses de su elección al papado, describe a Galileo «el más audaz héroe de la investigación ... sin miedos a lo preestablecido y los riesgos a su camino, ni temor a romper los monumentos»[40] Su biógrafo de 40 años, el profesor Robert Leiber escribió: "Pío XII fue muy cuidadoso en no cerrar ninguna puerta a la ciencia prematuramente. Fue enérgico en ese punto y sintió pena por el caso de Galileo."[41]

En 1979 y en 1981, el papa Juan Pablo II encarga una comisión de estudiar la controversia de Ptolomeo-Copérnico de los siglos XVI-XVII. Juan Pablo II considera que no se trataba de rehabilitación.[cita requerida]

El 31 de octubre de 1992, Juan Pablo II rinde una vez más homenaje al sabio durante su discurso a los partícipes en la sesión plenaria de la Academia Pontificia de las Ciencias. En él reconoce claramente los errores de ciertos teólogos del Siglo XVII en el asunto.

El papa Juan Pablo II pidió perdón por los errores que hubieran cometido los hombres de la Iglesia a lo largo de la historia. En el caso Galileo propuso una revisión honrada y sin prejuicios en 1979, pero la comisión que nombró al efecto en 1981 y que dio por concluidos sus trabajos en 1992, repitió una vez más la tesis que Galileo carecía de argumentos científicos para demostrar el heliocentrismo y sostuvo la inocencia de la Iglesia como institución y la obligación de Galileo de prestarle obediencia y reconocer su magisterio, justificando la condena y evitando una rehabilitación plena. El propio cardenal Ratzinger, prefecto de la Congregación para la Doctrina de la Fe, lo expresó rotundamente el 15 de febrero de 1990 en la Universidad romana de La Sapienza,[42] cuando en una conferencia hizo suya la afirmación del filósofo agnóstico y escéptico Paul Feyerabend:

La Iglesia de la época de Galileo se atenía más estrictamente a la razón que el propio Galileo, y tomaba en consideración también las consecuencias éticas y sociales de la doctrina galileana. Su sentencia contra Galileo fue razonable y justa, y sólo por motivos de oportunismo político se legitima su revisión -P.Feyerabend, Contra la opresión del método, Frankfurt, 1976, 1983, p.206-[43] [44]

Estas declaraciones serán objeto de una fuerte polémica cuando en el año 2008 el ya papa Benedicto XVI tenga que renunciar a una visita a la Universidad de Roma «La Sapienza».

Es habitual en Ratzinger la cita de autores, a priori contrarios a las posturas de la Iglesia, para reforzar sus tesis, de la misma forma que cita a Paul Feyerabend al que califica de filósofo agnóstico y escéptico,[45] cita también al que califica de marxista romántico Ernst Bloch para justificar científicamente, acogiéndose a la teoría de la relatividad, la corrección de la condena a Galileo no solamente contextualizada en su época sino desde la nuestra:

Según Bloch, el sistema heliocéntrico -al igual que el geocéntrico- se funda sobre presupuestos indemostrables. En esta cuestión desempeña un papel importantísimo la afirmación de la existencia de un espacio absoluto, cuestión que actualmente la teoría de la relatividad ha desmentido. Éste (Bloch) escribe textualmente: 'Desde el momento en que, con la abolición del presupuesto de un espacio vacío e inmóvil, no se produce ya movimiento alguno en éste, sino simplemente un movimiento relativo de los cuerpos entre sí, y su determinación depende de la elección del cuerpo asumido como en reposo, también se podría, en el caso de que la complejidad de los cálculos resultantes no mostrara esto como improcedente, tomar, antes o después, la tierra como estática y el sol como móvil' -E. Bloch, El principio de la esperanza, Frankfurt, 1959, p. 290-. La ventaja del sistema heliocéntrico con respecto al geocéntrico no consiste entonces en una mayor correspondencia con la verdad objetiva, sino simplemente en una mayor facilidad de cálculo para nosotros.[46]

Sin duda resulta más escandalosa para los científicos la aseveración, que también hace suya en esas mismas páginas, de C. F. von Wizsäcker:

Desde las consecuencias concretas de la obra galileana, C.F. von Weizsäcker, por ejemplo, da un paso adelante cuando ve un 'camino directísimo' que conduce desde Galileo a la bomba atómica.[47]

Si bien Ratzinger considera que Galileo abrió la 'caja de Pandora'[48] no se puede olvidar que será la Inquisición romana o Santo Oficio quien condena a Galileo.

Siglo XXI

Balance científico

El Santo Oficio prohibió en 1633 el Diálogo, texto escrito en 1632 por Galileo y le condenó a la cárcel, pero sin que se cumpliera la sentencia que no fue ratificada por el Papa.[49]

En relación a las aportaciones científicas de Galileo, además de a las realizadas por Copérnico y Kepler, es frecuente referirse a ellas como una revolución científica en la astronomía que inició la ciencia moderna (caracterizada por la matematización, el mecanicismo y la experimentación) y supuso un cambio de paradigma tanto en la astronomía (paso del geocentrismo al heliocentrismo) como en modo de trabajo en otras disciplinas que se fundamentó en el método científico:

El estudio de los trabajos experimentales y de las formulaciones teóricas de Galileo es importante, sin embargo, no solo para conocer el origen de la filosofía natural moderna sino también para comprender el modo como se pasa de un paradigma conceptual a otro. Por este motivo Galileo es un caso ejemplar, cuyo examen detallado lleva a replantear los problemas capitales de la teoría científica, la filosofía de la ciencia y la epistemología [50]

Para Stephen Hawking, Galileo probablemente sea, más que cualquier otro, el máximo responsable del nacimiento de la ciencia moderna;[51] Albert Einstein lo llamó Padre de la ciencia moderna.[52]

La protesta de La Sapienza en 2008

Joseph Ratzinger, ya como Papa, había sido invitado a participar[53] de la ceremonia de inauguración del curso académico prevista para el 17 de enero de 2008, pero tuvo que renunciar ante la protesta iniciada unos meses antes por 67 profesores de la Universidad de Roma La Sapienza y apoyada después por numerosos profesores y estudiantes para declararle persona non grata.[54] [55] El Claustro de profesores no aceptaba la posición 'medieval' del papa ante la condena de Galileo y condenaba las afirmaciones que había realizado en el discurso público pronunciado por el papa en la Universidad de Roma La Sapienza en 1990.[56]

Wikipedia y L'Oservatore Romano

Según L'Osservatore Romano, en realidad ni el discurso fue pronunciado en Parma ni en esa fecha concreta: los profesores de la Sapienza se basaron en una información incorrecta de Wikipedia, no la contrastaron y sacaron la frase de contexto haciendo decir a Ratzinger lo contrario de lo que dijo.[57]

En la Wikipedia en español aparecía, hasta el 17 de marzo de 2009, Parma en vez de Roma y la fecha del 30 de marzo de 1990 en vez del 15 de febrero de 1990 como lugar y fecha de la conferencia de Ratzinger. La conferencia completa está publicada en el capítulo 4 del libro de Joseph Ratzinger Una mirada a Europa, Rialp, 1993,[58]

En defensa de Ratzinger una gran manifestación[59] reúne 100.000 fieles en la Plaza de San Pedro el 20 de enero de 2008.[59]

Diálogo entre ciencia y fe

376 años después de su condena y la prohibición de sus libros, y aprovechando los eventos del Año de la astronomía, el Vaticano celebró el 15 de febrero de 2009 una misa en su honor. La celebración, fue oficiada por monseñor Gianfranco Ravasi y estuvo promovida por la Federación Mundial de Científicos; la Santa Sede quería hacer pública la aceptación del legado del científico dentro de la doctrina católica.[60]

En 2009, dentro de la celebración del Año Internacional de la Astronomía, la Santa Sede organizó un congreso internacional sobre Galileo Galilei.[61] [62]

En marzo se presentó en Roma el libro escrito en italiano Galileo y el Vaticano[63] que ofrece un «juicio objetivo por parte de los historiadores» para comprender la relación entre el gran astrónomo y la Iglesia. Al presentar el libro, el presidente del Consejo Pontificio para la Cultura, el arzobispo Gianfranco Ravasi, consideró que esta obra facilita a la Iglesia comprometerse «en una relación más vivaz y calmada con la ciencia».[64]

En julio se presentó una nueva edición sobre las investigaciones del proceso realizado a Galileo. El nuevo volumen se titula I documenti vaticani del processo di Galileo Galilei (‘Los documentos vaticanos del proceso de Galileo Galilei’), Archivo Secreto Vaticano. La edición ha ido a cargo del prefecto del Archivo Secreto Vaticano, monseñor Sergio Pagano.[65]

Bibliografía de Galileo

Obras de Galileo

Obra cronológica:

  • 1586 - Galileo Galilei. La Billancetta
  • 1590 ---- De Motu
  • 1606 ---- Le Operazioni del Compasso Geometrico et Militare
  • 1600 ---- Le Meccaniche
  • 1610 ---- Sidereus Nuncius (El Mensajero sideral)
  • 1615 ---- Carta a la Gran Duquesa Cristina (publicada en 1636)
  • 1616 ---- Discorso del flusso e reflusso del mare
  • 1619 ---- Discorso Delle Comete (publicado por Mario Guiducci)
  • 1623 ---- Il Saggiatore
  • 1632 ---- Dialogo sopra i due massimi sistemi del mondo tolemaico e copernicano (Diálogo sobre los principales sistemas del mundo)
  • 1638 ---- Discorsi e Dimostrazioni Matematiche, intorno a due nuove scienze attenenti alla meccanica & i movimenti locali (Diálogos sobre dos nuevas ciencias)

Obra en español:

  • Galilei, Galileo. Diálogo sobre los dos máximos sistemas del mundo ptolemaico y copernicano(Antonio Beltrán Marí, ed.), Alianza, Madrid, 1995 ISBN 84-206-9412-6
  • ---- Carta a Cristina de Lorena y otros textos sobre ciencia y religión(Moisés González, trad, introd.), Alianza, 2006 ISBN 13: 978-84-206-6015-8
  • ---- Cartas del Señor Galileo Galilei, Académico Linceo: escritos a Benedetto Castelli y a la Señora Cristina de Lorena, gran duquesa de Toscana (Pere de la Fuente, Xavier Granados y Francisco Reus, eds.), Alhambra, Madrid, 1986, ISBN 84-205-1307-5
  • ---- Consideraciones y demostraciones matemáticas sobre dos nuevas ciencias(C. Solis y J. Sádaba, eds.) Editora Nacional, Madrid, 1981, ISBN 84-276-1316-4
  • ---- Diálogo sobre los sistemas máximos: Jornada primera (José Manuel Revuelta, trad. y ed.), Aguilar, Buenos Aires 1980, ISBN 84-03-52158-8
  • Galilei, Galileo. El ensayador (José Manuel Revuelta, trad. y ed.), Aguilar, Buenos Aires, 1984 ISBN 84-8204-012-X

Obras sobre Galileo

Miscelánea

Objetos y misiones astronómicas en honor a Galileo

En el siglo XX la figura de Galileo ha inspirado los nombres de numerosos objetos astronómicos así como diferentes misiones tecnológicas.

  • La misión Galileo a Júpiter
  • Las lunas galileanas de Júpiter
  • Gao en Ganimedes
  • El cráter Galileo en la Luna
  • El cráter Galileo en Marte
  • El asteroide (697) Galilea (nombrado en el 300º aniversario del descubrimiento de las lunas galileanas)
  • Galileo (unidad)
  • El sistema de posicionamiento europeo Galileo

Obras de ficción sobre Galileo

Véase también

Referencias

  1. a b c d e O'Connor, J. J.; Robertson, E. F.. «Galileo Galilei». Archivo de MacTutor sobre Historia de la Matemática. Universidad de San Andrés, Escocia. Consultado el 24 julio 2007.
  2. Una corta historia de la ciencia del siglo XIX, Clarendon Press, 1941, http://www.google.com.au/books?id=mPIgAAAAMAAJ&pgis=1  (p. 217)
  3. a b Weidhorn, Manfred (2005). La Persona del Milenio: El Único Impacto de Galileo en la Historia del Mundo. iUniverse. pp. 155. ISBN 0595368778. 
  4. Drake (1978, p.1). La fecha de nacimiento de Galileo se da en acuerdo al calendario juliano, que tenía fuerza en toda la cristiandad. En 1582 se lo reemplaza en Italia y en varios otros países católicos por el calendario gregoriano. A menos que se indique, las fechas de este artículo se dan de acuerdo al calendario gregoriano.
  5. Plantilla:Ws × John Gerard. Visto 11 agosto de 2007
  6. Finocchiaro (2007).
  7. Sharratt (1996, pp.127–131), McMullin (2005a).
  8. Michael White. (2009) Galileo Anticristo. Una biografía. Ed. Almuzara. Pp. 31-32
  9. Reston (2000, pp. 3–14).
  10. Sharratt (1996, pp. 45–66).
  11. Rutkin, H. Darrel. «Galileo, Astrología, y la Revolución Científica: Otra Mirada». Programa en Historia & Filosofía de Ciencia & Tecnología, Stanford University.. Consultado el 15 abril 2007.
  12. Sobel (2000, p.5) Chapter 1. Visto 26 agosto de 2007. «Debido a no haberse casado su madre Virginia, será incasable. Al cumplir trece años, la coloca en el Convento de San Matteo en Arcetri».
  13. Pedersen, O. (24 al 27 mayo 1984). Galileo's Religion. Cracovia: Dordrecht, D. Reidel Publishing Co.. pp. 75-102. http://adsabs.harvard.edu/abs/1985gamf.conf...75P. Consultado el 9 de junio de 2008. 
  14. John Gribbin (2006). Historia de la ciencia 1543-2001. Crítica, p. 82.
  15. Manuel Campuzano Arribas. «Galileo Galilei Ciencia Contra Dogma». Vision net. 
  16. Gebler (1879, pp. 22–35).
  17. a b «El Descubrimiento de los Satélites Galileanos». Consultado el 15 de marzo de 2009.
  18. Anonymous (2007). «History». Accademia Nazionale dei Lincei. Consultado el 10-06-2008.
  19. Bertrand Russell (1951). El Panorama de la Ciencia. Pp. 382. Ver obra
  20. a b Carlos Solís y Manuel Sellés. (2005) Historia de la Ciencia. Espasa Calpe. Pp. 382
  21. a b Carlos Solís y Manuel Sellés. (2005) Historia de la Ciencia. Espasa Calpe. Pp. 382
  22. Michael White. (2009) Galileo Anticristo. Una biografía. Ed. Almuzara. Pp. 173
  23. Antonio Beltrán Mari. (2006). Talento y Poder. Letoli. Pp. 152, 154
  24. Carlos Solís y Manuel Sellés. (2005) Historia de la Ciencia. Espasa Calpe. Pp. 383-384
  25. Carlos Solís y Manuel Sellés. (2005) Historia de la Ciencia. Espasa Calpe. Pp. 415
  26. a b Carlos Solís y Manuel Sellés. (2005) Historia de la Ciencia. Espasa Calpe. Pp. 385-386
  27. Antonio Beltrán Mari. (2006). Talento y Poder. Carta a Foscarini. Pp. 231 - 233
  28. Michael White. (2009) Galileo Anticristo. Una biografía. Ed. Almuzara. Pp. 215-220
  29. Langford, Jerome K., O.P. (1998). Galileo, Science and the Church (third ed.). St. Augustine's Press, pp.133–134. Seeger, Raymond J. (1966). Galileo Galilei, his life and his works. Oxford: Pergamon Press. p.30
  30. Stillman Drake, Noel M. Swerdlow, Trevor Harvey Levere. (1999) Essays on Galileo and the history and philosophy of science, Volumen 1. Univ. of Toronto Press Inc.. Pp. 84-88(Ver obra)
  31. Heilbron, John L. (2005). Censorship of Astronomy in Italy after Galileo. p. 307.
  32. Sharratt, Michael (1994), Galileo: Decisive Innovator p.125. Cambridge University Press, Cambridge. ISBN 0-521-56671-1
  33. Michael White. (2009) Galileo Anticristo. Una biografía. Pp. 248-249
  34. Antonio Beltrán Mari. (2006). Talento y Poder. Pp. 504 - 509
  35. Michael White. (2009) Galileo Anticristo. Una biografía. Pp. 271
  36. Antonio Beltrán Mari. (2006). Talento y Poder. Pp. 531
  37. Antonio Beltrán Mari. (2006). Talento y Poder. Primer interrogatorio de Galileo. Pp. 534-542
  38. Michael White. (2009) Galileo Anticristo. Una biografía. Pp. 286-301
  39. La frase Eppur si muove aparece en una pintura de los años 1640 del pintor español Bartolomé Esteban Murillo (o de un artista de su escuela). La pintura representa a Galileo en prisión, apuntando hacia la frase escrita en la pared de su calabozo. Véase Stillman DRAKE (1978): http://books.google.es/books?id=OwOlRPbrZeQC&lpg=PP1&dq=Galileo%20at%20work&pg=PA357#v=onepage&q=&f=false Galileo at work (pág. 356-357). Chicago: University of Chicago Press. ISBN 0-226-16226-5.]
  40. Discurso del papa Pío XII del 3 de diciembre de 1939 al Solemn Audience de la Sesión Plenaria de la Academia, Discursos de los papas, desde Pío XI hasta Juan Pablo II a la Academia Pontifícia de Ciencias 1939-1986. Ciudad del Vaticano, pág. 34
  41. Robert Leiber, Pius XII Stimmen der Zeit, noviembre de 1958 en Pío XII. Sagt, Frankfurt 1959, p.411
  42. Véase la nota inicial del propio Ratzinger: «El primer borrador de este texto fue presentado en Rieti, el 16 de diciembre de 1989, bajo la impresión aún fresca de los acontecimientos en Europa del Este, como intento de una primera aproximación a las causas y consecuencias de lo ocurrido. La versión aquí ofrecida sirvió el 15 de febrero de 1990 para una conferencia en la universidad romana de La Sapienzia. Con motivo de la celebración del aniversario 1400 del Concilio de Toledo, el 24 de febrero de 1990 presenté en Madrid una versión modificada de acuerdo con las circunstancias en Ratzinger, Joseph, Capítulo 4, La fé y las convulsiones socio-políticas contemporáneas, en Una mirada a Europa Rialp 1993 (Edizione Paoline 1992), pp. 111
  43. Ratzinger, Joseph, La Crisis de la Fe en la Ciencia, sección del capítulo 4, La fé y las convulsiones socio-políticas contemporáneas, 15 febrero de 1990, Universidad de La Sapienza, en Una mirada a Europa Rialp 1993 (Edizione Paoline 1992), pp. 129
  44. La Crisis de la Fe en la Ciencia, 15 febrero 1990, Roma, extractos tomados de Una mirada a Europa: Iglesia y modernidad en la Europa de las revoluciones Ed. Paulinas, 1992, pp. 76-79 traducido al inglés en el sitio del National Catholic Reporter
  45. Ratzinger, Joseph, Una mirada a Europa Rialp 1993 (Edizione Paoline 1992), pp. 129
  46. Ratzinger, Joseph, La Crisis de la Fe en la Ciencia, sección del capítulo 4, La fé y las convulsiones socio-políticas contemporáneas, 15 de febrero de 1990, Universidad de La Sapienza, en Una mirada a Europa Rialp 1993 (Edizione Paoline 1992), pp. 128
  47. Ratzinger, Joseph, La Crisis de la Fe en la Ciencia, sección del capítulo 4, La fé y las convulsiones socio-políticas contemporáneas, 15 febrero de 1990, Universidad de La Sapienza, en Una mirada a Europa Rialp 1993 (Edizione Paoline 1992), pp. 129-130
  48. Ratzinger, Joseph, La Crisis de la Fe en la Ciencia, sección del capítulo 4, La fé y las convulsiones socio-políticas contemporáneas, 15 de febrero de 1990, Universidad de La Sapienza, en Una mirada a Europa Rialp 1993 (Edizione Paoline 1992), pp. 130
  49. 'Galilei,Galileo' en Diccionario de Filosofía de Ferrater Mora, Ariel, Barcelona, 1994, ISBN 84-344-0500-8, vol. E-J., pág 1425-1426
  50. 'Galilei,Galileo' en Diccionario de Filosofía de Ferrater Mora, Ariel, Barcelona, 1994, ISBN 84-344-0500-8, vol. E-J., pág 1426
  51. Hawking (1988, p.179)
  52. Einstein (1954, p.271). Propositions arrived at by purely logical means are completely empty as regards reality. Because Galileo realised this, & particularly because he drummed it into the scientific world, he is the father of modern physics—indeed, of modern science altogether.
  53. Discurso preparado para el encuentro con la universidad de Roma "La Sapienza" (17-I-2008)
  54. Ola anticlerical en Italia en 'El País' 17-1-2008
  55. El Papa suspende su visita a la Universidad de La Sapienza tras las protestas de los profesores - La Vanguardia
  56. Ratzinger, Joseph, sección La Crisis de la Fe en la Ciencia del capítulo La fe y las convulsiones socio-políticas contemporáneas, conferencia impartida el 15 de febrero de 1990 en la universidad romana de La Sapienza, en Una mirada a Europa: Iglesia y modernidad en la Europa de las revoluciones 1993, Rialp, D.L. ISBN 84-321-2877-5
  57. Catedráticos italianos atacaron al Papa basándose en cita tomada de Wikipedia
  58. Ratzinger, Joseph, La Crisis de la Fe en la Ciencia, sección del capítulo 4, La fé y las convulsiones socio-políticas contemporáneas, 15 de febrero de 1990, Universidad de La Sapienza, en Una mirada a Europa Rialp 1993 (Edizione Paoline 1992)
  59. a b 100.000 personas defienden «el derecho a la palabra» del papa en Roma, Le Monde, 21 de enero de 2008
  60. El Vaticano celebra una misa en honor del científico renacentista Galileo Galilei
  61. La Santa Sede organiza un congreso internacional sobre Galileo Galilei
  62. Istituto Niels Stensen - International congress: The Galileo Affair
  63. Mariano Artigas, Melchor Sánchez de Toca (2009). Galileo e il Vaticano. Marcianum Press. ISBN 9788889736739. 
  64. Un libro recoge la relación entre “Galileo y el Vaticano”
  65. El Archivo Secreto Vaticano ofrece novedades sobre el caso de Galileo
  66. www.granadacultural.info. «Bibliografía sobre Galileo Galilei». Consultado el 23 de diciembre de 2009.

Enlaces externos

Archivos de audio


Wikimedia foundation. 2010.

Игры ⚽ Поможем сделать НИР

Mira otros diccionarios:

  • Galileo Galilei — – Porträt von Justus Sustermans, 1636 …   Deutsch Wikipedia

  • Galileo Galilei —     Galileo Galilei     † Catholic Encyclopedia ► Galileo Galilei     Generally called GALILEO. Born at Pisa, 15 February, 1564; died 8 January, 1642.     His father, Vincenzo Galilei, belonged to a noble family of straitened fortune, and had… …   Catholic encyclopedia

  • Galileo Galilei —   Wenige Wissenschaftler haben solche Faszination wie Galileo Galilei ausgeübt: Er beobachtete als Erster den Himmel mithilfe des Fernrohrs, machte dabei sensationelle Entdeckungen und leitete die moderne Astronomie ein. Er legte die Fundamente… …   Universal-Lexikon

  • Galileo Galilei — (15. februar 1564 8. januar 1642) var en italiensk filosof, fysiker og astronom. Han var en af pionererne indenfor astronomi. Galilei blev født i Pisa, Italien. Han studerede medicin ved universitetet i Pisa, og blev senere professor i matematik… …   Danske encyklopædi

  • Galileo Galilei — (Pisa, 15 de febrero de 1564 Florencia, 8 de enero de 1642), fue un astrónomo, filósofo, matemático y físico que estuvo relacionado estrechamente con la revolución científica. Eminente hombre del …   Enciclopedia Universal

  • Galileo Galilei — For other uses of Galileo , see Galileo (disambiguation). For other uses of Galileo Galilei , see Galileo Galilei (disambiguation) …   Wikipedia

  • Galileo Galilei — Galilée (savant) Pour les articles homonymes, voir Galilée. Galileo Galilei …   Wikipédia en Français

  • Galileo Galilei (opera) — Galileo Galilei is an opera based on excerpts from the life of Galileo Galilei which premiered in 2002 at Chicago s Goodman Theatre. Music by Philip Glass, libretto by Mary Zimmerman and Arnold Weinstein. The piece is presented in one act… …   Wikipedia

  • Galileo Galilei Apartment Florence (Florence) — Galileo Galilei Apartment Florence country: Italy, city: Florence (City Centre: Santa Croce) Galileo Galilei Apartment Florence Set in a 19th Century historical Palace, Galileo Galilei Apartment Florence is located in the heart of Florence, close …   International hotels

  • Galileo Galilei (Галилео Галилей) — «Galileo Galilei» («Галилео Галилей») посыльное судно (Италия) Тип: посыльное судно (Италия). Водоизмещение: 900 тонн. Размеры: 70 м х 8 м х 3,75 м. Силовая установка: одновальная, вертикальная паровая машина тройного расширения. Вооружение:… …   Энциклопедия кораблей

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”