Anillo cíclico

Anillo cíclico

Anillo cíclico

Contenido

Definición

Anillo cíclico.png

Los anillos son estructuras matemáticas sencillas que generalizan las propiedades de la adición y la multiplicación (asociatividad, conmutatividad, distributividad, elemento neutro, opuesto...) del conjunto de los enteros relativos Z en particular.

Los anillos cíclicos se caracterizan por ser generados por un sólo elemento (se dicen monogéneos) y por ser finitos. Más precisamente, para todo número natural n ≥ 2 existe un único anillo cíclico (mediante isomorfismos) de orden (tamaño) n, se lo nota Z/nZ(como cociente del anillo Z por el ideal nZ), Z/(n) (nZ, ideal generado por n se escribe también (n) ) o Zn, y se puede representar como en la figura.
Fueron los primeros anillos descubiertos después de Z y la apelación "anillo" proviene evidentemente de la figura anterior.

Cálculo elemental

En el anillo Zn, la suma y el producto son los usuales en Z con una regla adicional: se decide que los números n y 0 son iguales: se escribe n ≡ 0 ó n ≡ 0 (mod n) para ser más preciso, cuando uno se sitúa en Z, y \overline {n} = \overline {o} cuando se trabaja en Zn (ā es una manera arbitraria de designar la clase de equivalencia de a en Zn - no se empleará aquí esta notación).
Aplicando varias veces lo anterior se muestra que es lícito añadir o sustraer cuantas veces se quiere "n" a un término sin cambiar su valor en Zn :

a ≡ a + k·n (mod n), con k ∈ Z.


Se dice que a y a + k·n son iguales módulo n o congruentes módulo n y se llama cálculo modular o congruencias esta clase de igualdades.

Por ejemplo en Z10: 1968 ≡ 8, porque 1968 = 196×10 + 8.

En este ejemplo, 8 es el resto de la división euclidiana de 1968 por 10, y de hecho cada división da lugar a una congruencia:

el resto y el dividendo son iguales módulo el divisor
si a = b·q + r, entonces r ≡ a (mod q)


La relación ≡ se puede ver como una congruencia en Z o como una igualdad en Zn. Como hemos decidido no distinguir el entero a de su clase ā, una misma relación a ≡ b (mod n) tiene dos interpretaciones. Verla como una igualdad conlleva la ventaja de ser mucho más intuitivo; por ejemplo las propiedades siguientes no sorprenderán:

Sean a1,a2, b1, b2 enteros (o elementos de Zn), y m un natural, entonces:

\mbox{si } \  a_1 \equiv a_2 \  y\ \ b_1 \equiv b_2 \ \ \mbox{entonces }  \left \{ \begin{matrix} a_1 + b_1 \equiv a_2 + b_2 ,  \\ a_1 b_1 \equiv a_2 b_2, \\ a_1^m \equiv a_2^m   \end{matrix} \right.

Aplicaciones directas a la aritmética

  • Los criterios de divisibilidad por 3, 9 y 11 son consecuencia directa de la relaciones anteriores.

Consideremos el más conocido, el criterio por 9. Sea un número ncuyas cifras son ao (unidades), a1 (decenas), a2 (centenares)...

Es costumbre escribirlo n = \overline{a_p a_{p-1} ... a_2 a_1 a_o} para distinguirlo del producto n = a_p a_{p-1} ... a_2 a_1 a_o  \quad y vale, en escritura clásica: n = a_p 10^p +  a_{p-1} 10^{p-1} + ... +  a_2 10^2 +  a_1 10 + a_o \quad

Como  10 \equiv 1 \;(mod \; 9) entonces para todo k entero positivo  10^p \equiv 1^p \equiv 1 \;(mod \; 9)\quad , y sumando los términos que aparecen en n se obtiene: n = a_p 10^p  + ... + a_1 10 + a_o \equiv a_p+a_{p-1}+ ...+ a_1 + a_0 \;(mod \; 9 )

Es decir que el resto módulo 9 se obtiene sumando las cifras del número. Para verificar un cálculo, por ejemplo un producto: a = b×c, se miran los restos módulo 9, a', b' y c', y si a'≠b'×c' (mod 9) entonces el cálculo es erróneo. En caso contrario no se puede concluir.

  • Las congruencias permiten también resolver problemillos esencialmente lúdicos al estilo hallar la cifra de las unidades de 20032005.

Un ordenador común y corriente es incapaz de calcular tamaño número. Buena ocasión para subrayar la superioridad de la inteligencia humana sobre la artificial, y lucirse a la primera oportunidad...
Encontrar la cifra de las unidades se logra trabajando módulo 10, pues el resto de la división por 10 es justamente esta cifra.
Como 2003 ≡ 3 (mod 10), 20032005 ≡ 32005, luego nos toca mirar los 3k (mod 10):
30 ≡ 1, 3¹ ≡ 3, 3² ≡ 3, 3³ = 27 ≡ 7, 34 = 81 ≡ 1.
Este último resultado permite generalizar: 34k ≡ 1, para todo k natural.
Luego dividimos 2005 por 4: 2005 = 4×501 + 1.
Finalmente 32005 = 34×501 + 1 = 34×501× 3¹ ≡ 1 × 3 = 3 (mod 10).
La cifra buscada es 3.

Elementos inversibles

La adición, sustracción y multiplicación se comportan como era de esperar en los anillos cíclicos. Pero ¿ Qué hay de la división ?
Dividir por un número es por definición multiplicar por su inverso. La cuestión es entonces averiguar cuales son los elementos inversibles del anillo. El número a es inversible en Z/(n) si y sólo si existe b tal que:

a·b ≡ 1 (mod n)     lo que se escribe:     a·b = 1 + k·n, k ∈ Z     es decir: a·b - k·n = 1.

Esto es una identidad de Bézout y tiene soluciones si y sólo si a y n son números coprimos (es decir primos entre sí: su máximo común divisor es 1 ).
Ejemplos:

  • 2 y 5, al ser número primos distintos, son coprimos, entonces 2 es inversible en Z5. Una relación de Bézout es 2×3 - 1×5 = 1 que da 2×3 ≡ 1 (mod 5), por lo consiguiente el inverso de 2 es 3 en Z5. En efecto 2×3 = 6 ≡ 1 (mod 5).
  • 7 y 12 son coprimos porque el número primo 7 no aparece en la descomposición en factores primos de 12 = 2²×3.

El algoritmo de Euclides permite obtener la relación de Bezout:

3×12 - 5×7 = 1    que da la congruencia:    -5×7 ≡ 1 (mod 12).

-5 es por lo tanto el inverso de 7 en Z12. Pero -5 ≡ 7 (mod 12), por lo consiguiente 7 es su propio inverso en Z12, lo que se verifica rápidamente: 7² = 49 = 4×12 + 1 ≡ 1 (mod 12).

El número de elemento inversibles de Zn se nota φ(n), done φ es la función fi de Euler.
Si n es primo, y sólo en este caso, todos los enteros naturales no nulos inferiores a n son coprimos con n; esto implica que serán todos inversible en Zn, lo que convierte este anillo en un cuerpo a veces denotado Fn.

Universalidad de los anillos cíclicos

Sea A un anillo finito, cuyo neutro (para la multiplicación) denotamos e. El conjunto de los múltiplos de e, C = {0, e, 2·e, 3·e, 4·e...} por ser incluido en A es también finito. Entonces a partir de cierto valor de m, m·e ya fue listado en C, es decir que existe k < m tal que k·e = m·e. Por sustracción n·e = 0 con n = m - k.
Sea n el menor entero natural no nulo tal que n·e = 0. Luego C = {0, e, 2·e, 3·e, 4·e...(n-1)·e} es decir que C es isomorfo al anillo cíclico de orden n. Además C pertenece al centro de A, pues sus elementos conmuten con todos los de A.
El número n verifica además la propiedad de anular todos los elementos de A: para todo a ∈ A, n·a = n·e·a = 0·a = 0. Es el menor natural no nulo que tiene esta propiedad, y recibe el nombre de característica del anillo.

En resumen:

Todo anillo finito tiene en su centro un anillo cíclico.
Su orden es la característica del anillo
La estructura del anillo es definida en gran medida por su anillo cíclico

En efecto, el producto :

C \times A \rightarrow A
(c, a) \rightarrow c\cdot a

Convierte en anillo A en un módulo sobre C = Zn. en particular, si la característica n es un primo, entonces A es un espacio vectorial sobre el cuerpo C = Zn, y como tal es forzosamente ismorfo a Cn. El producto interior le da además una estructura de álgebra.

Productos de anillos cíclicos

Teorema:

Para todo par (a, b) de enteros coprimos, Za·b es isomorfo al producto de anillos Za×Zb.

Esta permite descomponer un anillo cíclico Zn en otros menores, según la factorización en números primos de n.

Prueba:

Consideremos la aplicación lineal f:

ZZa× Zb
 n → (n mod a, n mod b)        ("n mod a" es la clase de n en Za)

El núcleo de esta aplicación es el conjunto de los n divisibles a la vez por a y por b; son por lo tanto los múltiplos de mínimo común múltiplo de a y b que es ab porque a y b son coprimos: El núcleo es Ker f = a·bZ.
Como a y b son coprimos, el teorema de los restos chinos, consecuencia de la identidad de Bézout afirma que f es sobreyectiva: Im f = Za×Zb. Según la descomposición de una aplicación lineal existe un isomorfismo (luego una biyección) entre Z/Ker f e Im f es decir entre Za·b y Za× Zb.

Tablero producto anillos cíclicos 2.png

La biyección se obtiene gráficamente en un tablero de a × b casillas, enumerando las casillas de la diagonal (lo que corresponde a la aplicación n → (n, n) ) y cuando se alcanza un borde se sigue por el borde opuesto, como si se tocasen. Las flechas en rojo de la segunda figura indican estos repentinos cambios de bordes.
Miremos por ejemplo la casilla que contiene el número 17. Corresponde al elemento \overline{17} de Z28. Está situado en la columna \overline{3} y la fila \overline{1}.
Entonces \overline{17} de Z28 corresponde a (\overline{3}, \overline{1}) de Z7×Z4.


Tablero producto anillos cíclicos 1.png



Con valores pequeños de a y b existe otra manera de obtener la biyección: En vez de cortar en pedazos la diagonal, se prefiere reproducir el tablero a × b cuantas veces sea necesario (de hecho, b·a veces) para obtener los a·b elementos de Za·b. Luego se los reúnen en un mismo cuadro.
Z6Z2×Z3, así:
0 → (0,0)
1 → (1,1)
2 → (0,2)
3 → (1,0)
4 → (0,1)
5 → (1,2)


Pegar los bordes opuestos de un rectángulo da en topología un toro, un neumático sin la apertura central. El toro es en geometría el producto de dos círculos, cada uno representa un anillo cíclico.

El contenido de este artículo incorpora material de una entrada de la Enciclopedia Libre Universal, publicada en español bajo la licencia Creative Commons Compartir-Igual 3.0.
Obtenido de "Anillo c%C3%ADclico"

Wikimedia foundation. 2010.

Игры ⚽ Поможем написать курсовую

Mira otros diccionarios:

  • Anillo cíclico — Definición Los anillos son estructuras matemáticas sencillas que generalizán las propiedades de la adición y la multiplicación (asociatividad, conmutatividad, distributividad, elemento neutro, opuesto ...) del conjunto de los enteros relativos Z… …   Enciclopedia Universal

  • Anillo planetario — Saltar a navegación, búsqueda Un anillo planetario es un anillo de polvo y otras partículas pequeñas que gira alrededor de un planeta. Los más espectaculares y conocidos desde la época telescópica son los anillos de Saturno. Durante mucho tiempo… …   Wikipedia Español

  • cíclico — cíclico, ca adjetivo 1. Que se repite cada cierto periodo de tiempo: Las crisis económicas son fenómenos cíclicos. Esta enfermedad pasa por varias fases cíclicas. 2. Área: química [Estructura molecular] que tiene forma de anillo. 3 …   Diccionario Salamanca de la Lengua Española

  • cíclico — cíclico, ca (Del lat. cyclĭcus, y este del gr. κυκλικός). 1. adj. Perteneciente o relativo al ciclo. 2. Dicho de un poeta: Que refiere en alguna obra todos los casos de un ciclo. 3. Dicho de una poesía épica: Que abarca y comprende todo el ciclo …   Diccionario de la lengua española

  • cíclico — (Del lat. cyclicus < gr. kyklikos.) ► adjetivo 1 Del ciclo: ■ compuesto cíclico. 2 Que está programado o tiene lugar siguiendo ciclos: ■ enseñanza cíclica. 3 BOTÁNICA Dispuesto circularmente, en verticilos: ■ órganos cíclicos; hojas cíclicas.… …   Enciclopedia Universal

  • cíclico — {{#}}{{LM C08614}}{{〓}} {{SynC08832}} {{[}}cíclico{{]}}, {{[}}cíclica{{]}} ‹cí·cli·co, ca› {{《}}▍ adj.{{》}} {{<}}1{{>}} Del ciclo o relacionado con él: • La metamorfosis de un insecto pasa por varias fases cíclicas.{{○}} {{<}}2{{>}} Que ocurre o… …   Diccionario de uso del español actual con sinónimos y antónimos

  • Compuesto cíclico — En química orgánica, un compuesto cíclico es un compuesto en el que una serie de átomos de carbono están conectados para formar un lazo o anillo.[1] Un ejemplo muy bien conocido es el benceno. Cuando hay más de un anillo en una sola molécula, por …   Wikipedia Español

  • Descomposición de una aplicación lineal — Saltar a navegación, búsqueda Contenido 1 Isomorfismo canónico 1.1 Definición y teorema 1.2 Prueba …   Wikipedia Español

  • olefina — ► sustantivo femenino QUÍMICA Denominación que se da a los cuatro primeros miembros de la serie de hidrocarburos etilénicos. * * * o alcano Cualquier hidrocarburo no saturado que contiene uno o más pares de átomos de carbono unidos por un enlace… …   Enciclopedia Universal

  • Emmy Noether — Amalie Emmy Noether Nacimiento 23 de marzo de 1882 Erlangen, Baviera, Alemania Fallecimiento …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”