- Número de Smith
-
Un número de Smith es un número entero tal que la suma de sus dígitos es igual a la suma de los dígitos de los números restantes tras la factorización en primos (la factorización debe estar escrita sin exponentes, repitiendo los números todas las veces necesarias). Por ejemplo, 378 = 2 × 3 × 3 × 3 × 7 es un número de Smith en base 10, porque 3 + 7 + 8 = 2 + 3 + 3 + 3 + 7. Por definición, se deben contar los dígitos de los factores. Por ejemplo, 22 en base 10 es 2 × 11, y se deben contar los tres dígitos: 2, 1, 1. Por lo tanto 22 es un número de Smith porque 2 + 2 = 2 + 1 + 1.
En base 10, los primeros números de Smith son: 4, 22, 27, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 378, 382, 391, 438, 454, 483, 517, 526, 535, 562, 576, 588, 627, 634, 636, 645, 648, 654, 663, 666, 690, 706, 728, 729, 762, 778, 825, 852, 861, 895, 913, 915, 922, 958, 985, 1086.
Estos se conocen bajo el nombre de números de Smith porque en 1982 Albert Wilanski en la universidad de Lehigh se dio cuenta que el número del teléfono de su cuñado Harold Smith tenía la peculiar propiedad ya descrita. El número es 493-7775, que se puede expresar como 3 x 5 x 5 x 65.837, entonces 4+9+3+7+7+7+5 = 42 igual que la suma de los dígitos de sus factores primos: 3+5+5+6+5+8+3+7 = 42
Categoría:- Sucesiones de enteros dependientes de la base
Wikimedia foundation. 2010.