- Número periódico
-
Un número periódico es un número racional caracterizado por tener un período (cifras que se repiten indefinidamente) en su expansión decimal. Este período puede constar de una o varias cifras, como o
El período se puede expresar escribiendo un arco encima de las cifras repetidas, por ejemplo o .
Contenido
Tipos de números periódicos
Número periódico puro: Cuando inmediatamente después de la coma hay una o más cifras que se repiten.
- Ejemplo:
Número periódico mixto (también llamado semiperiódico): Cuando después de la coma hay una o más cifras que no se repiten, seguidas por una o más cifras que sí se repiten.
- Ejemplo: , en donde 23 es el anteperíodo.
Fracción correspondiente a un número periódico
Números periódicos Dado un número periódico en su representación decimal, es posible encontrar la fracción que lo produce (fracción generatriz). Ejemplo:
Otro ejemplo:
El procedimiento anterior es general y permite enunciar las siguientes reglas:
- Número periódico puro: La fracción de un número decimal periódico puro tiene:
- numerador: la diferencia entre la parte anterior al período seguida del período (todo escrito sin la coma, de corrido, como un único número entero) menos la parte anterior al período.
- denominador: tantos 9 como cifras tiene el período
- Ejemplo:
- Número periódico mixto: La fracción de un número decimal periódico mixto tiene:
- numerador: la diferencia entre la parte anterior al período seguida del período (todo escrito sin la coma, de corrido, como un único número entero) menos la parte anterior al período.
- denominador: tantos 9 como cifras tiene el período, seguidos de tantos 0 como cifras tiene la parte no periódica.
- Ejemplo: .
Tipo de número periódico resultante
Dada una fracción irreducible (es decir, en la que numerador y denominador son primos entre sí, y por tanto no se puede simplificar más) es sencillo saber si corresponde a un número periódico puro, mixto, o es un decimal exacto, sin necesidad de hacer la división:
- Si al descomponer el denominador en factores primos, éstos son sólo el 2 y/o el 5, será exacta.
-
- Por ejemplo: , como 20=2×2×5, será exacta; en efecto
- Otro ejemplo: , como 25=5×5, será exacta; en efecto
- Si al descomponer el denominador en factores primos, éstos no contienen ni al 2 ni al 5, será periódica pura:
-
- Por ejemplo , como 21=3×7, será periódica pura; en efecto
- Si al descomponer el denominador en factores primos, éstos contienen al 2 y/o al 5, y además algún otro factor, será periódica mixta:
-
- Por ejemplo , como 42=2×3×7, será periódica mixta; en efecto
Referencias
- Jimenez Hernández, José de Jesús. Matemáticas 1. Ediciones Umbral. p. 66.
- Weisstein, Eric W. "Repeating Decimal." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RepeatingDecimal.html
Categorías:- Sistemas de numeración posicional
- Fracciones
- Aritmética elemental
Wikimedia foundation. 2010.