Surface Bundle

Surface Bundle
Archivo:Fibrado1.PNG
Diagrama-esquema de un F-fibrado, E, sobre S1

Surface bundle es un fibrado por superficie, es decir la fibra es una 2-variedad y sobre alguna base -en símbolos:

F\subset E\to B

donde E el fibrado (o espacio total), F es la fibra (espacio fibra) y B la base del fibrado (espacio base del fibrado), siendo casos importantes:

    1. Fibrar sobre el círculo S1 y es por lo tanto un tipo de 3-variedad. Una castellanización de este nombre pueden ser: F-fibrado sobre B, o bien fibrado por superficies sobre B.
    2. Fibrar sobre otra superficie. Es este caso reciben el nombre de surface bundle over a surface y son una clase de 4-variedades.

No son importante los fibrados-por-superficie que tengan una base que sea contraible desde el punto de vista homotópico, pues en este caso, el fibrado es trivial, es decir, homeomorfo a F\times B


Cuando la base es un círculo el espacio es un surface bundle over the circle. Estos fibrados están clasificados por clases de isotopía de auto-homeomorfismos; F\stackrel{[f]}\to F.

Construcción

Sea F una superficie cerrada. Si tenemos el producto cartesiano F\times I, entonces vamos a utilizar un homeomorfismo \phi\colon F\to F para identificar las tapas F\times \{0\} con F\times \{1\} usando la fórmula

(x,0)(ϕ(x),1)

así el nuevo espacio E_{\phi}=\frac{F\times I}{\sim} es el F-fibrado sobre S1 determinado por ϕ

Si ϕ es el mapa identidad de F, el fibrado es F\times S^1.

Cuando ϕ no está en la clase de isotopía de la identidad el fibrado E_{\phi}=F\times_{\phi}S^1 se dice twisted surface bundle.

Para la 2-esfera hay dos S^2\times S^1 y S^2\stackrel{\sim}\times S^1.

Se distingue entre fibrados que utilizan supericies cerradas (compactas y sin frontera) para obtener fibrados sin frontera. Además usando la clasificación de las superficies obtemos

  • O_g\subset E\to B
  • N_k\subset E\to B

sobre alguna base B de dimensión uno.

Como los fibrados sobre la recta numérica \mathbb{R}^1 (o intervalos conexos) son triviales (i.e. solo obtenemos E=F\times\mathbb{R}^1), es por eso que hay más riqueza al estudiar fibrados sobre el círculo, S1.


Wikimedia foundation. 2010.

Игры ⚽ Поможем написать курсовую

Mira otros diccionarios:

  • Surface bundle — In mathematics, a surface bundle is a bundle in which the fiber is a surface. When the base space is a circle the total space is three dimensional and is often called a surface bundle over the circle.ee alsoMapping torus …   Wikipedia

  • Surface bundle over the circle — In mathematics, a surface bundle over the circle is a fiber bundle with base space a circle, and with fiber space a surface. Therefore the total space has dimension 2 + 1 = 3. In general, fiber bundles over the circle are a special case of… …   Wikipedia

  • Surface of general type — In algebraic geometry, a surface of general type is an algebraic surface with Kodaira dimension 2.These are all algebraic, and in some sense most surfaces are in this class. ClassificationGieseker showed that there is a coarse moduli scheme for… …   Wikipedia

  • Bundle gerbe — In mathematics, a bundle gerbe is a geometrical model of certain 1 gerbes with connection, or equivalently of a 2 class in Deligne cohomology. Topology U (1) principal bundles over a space M (see circle bundle) are geometrical realizations of 1… …   Wikipedia

  • Torus bundle — In mathematics, in the sub field of geometric topology, a torus bundle is a kind of surface bundle over the circle, which in turn are a class of three manifolds.ConstructionTo obtain a torus bundle: let f be an orientation preserving… …   Wikipedia

  • Vector bundle — The Möbius strip is a line bundle over the 1 sphere S1. Locally around every point in S1, it looks like U × R, but the total bundle is different from S1 × R (which is a cylinder instead). In mathematics, a vector bundle is a… …   Wikipedia

  • Canonical bundle — In mathematics, the canonical bundle of a non singular algebraic variety V of dimension n is the line bundle which is the nth exterior power of the cotangent bundle Ω on V. Over the complex numbers, it is the determinant bundle of holomorphic n… …   Wikipedia

  • Rational surface — In algebraic geometry, a branch of mathematics, a rational surface is a surface birationally equivalent to the projective plane, or in other words a rational variety of dimension two. Rational surfaces are the simplest of the 10 or so classes of… …   Wikipedia

  • Conic bundle — In algebraic geometry, a conic bundle is an algebraic variety that appears as a solution of a Cartesian equation of the form Theoretically, it can be considered as a Severi–Brauer surface, or more precisely as a Châtelet surface. This can be a… …   Wikipedia

  • Vascular bundle — A vascular bundle is a part of the transport system in vascular plants. The transport itself happens in vascular tissue, which exists in two forms: xylem and phloem. Both these tissues are present in a vascular bundle, which in addition will… …   Wikipedia

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”