Teorema de Cantor-Bernstein-Schröder

Teorema de Cantor-Bernstein-Schröder

El teorema de Schröder y Bernstein establece un criterio para establecer si existe una función biyectiva entre dos conjuntos cualesquiera A y B:

Para cualesquiera conjuntos A y B, si existe una función inyectiva de A en B y existe una función inyectiva de B en A, entonces existe una correspondencia biunívoca entre B y A.

El teorema puede parecer trivial para conjuntos finitos, pero el enunciado del teorema se cumple para conjuntos de cualquier cardinalidad. El teorema resulta útil en muchos casos para poder determinar si un conjunto tiene la misma cardinalidad que otro conjunto, ya que dos conjuntos tienen la misma cardinalidad justo cuando existe una correspondencia biunívoca entre ellos


Wikimedia foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Mira otros diccionarios:

  • Ernst Schröder — Saltar a navegación, búsqueda Ernst Schröder Ernst Schröder ( Mannheim, 25 de noviembre de 1841 – Karlsruhe, 16 de junio de 1902) fue un matemático alemán, conocido especialmente por …   Wikipedia Español

  • Número cardinal (teoría de conjuntos) — Este artículo trata sobre números cardinales en teoría de conjuntos axiomática. Para una introducción más básica, véase Número cardinal. Comparación de los cardinales numerable y continuo. Cada sucesión binaria, compuesta por una cantidad… …   Wikipedia Español

  • Jim Simons — Simons en 2007, en la Conferencia Differential Geometry, Mathematical Physics, Mathematics and Society en Bures sur Yvette …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”