Teorema de Ptolomeo

Teorema de Ptolomeo
Un cuadrilátero cumple con el Teorema de Ptolomeo si y solamente si es cíclico.

El teorema de Ptolomeo es una relación en geometría euclidiana entre los cuatro lados y las dos diagonales de un cuadrilátero cíclico. El teorema recibe su nombre del astrónomo y matemático griego Claudio Ptolomeo.

Si un cuadrilátero está dado por sus cuatro vértices A, B, C, D, el teorema afirma que:

\overline{AC}\cdot \overline{BD}=\overline{AB}\cdot \overline{CD}+\overline{BC}\cdot \overline{AD}

Donde la línea sobre las Letras indica la longitud de los segmentos entre los vértices correspondientes.

Esta relación puede ser expresada de manera verbal de la siguiente forma:

Teorema de Ptolomeo

En todo cuadrilátero inscribible en una circunferencia, la suma de los productos de los pares de lados opuestos es igual al producto de sus diagonales.


Contenido

Demostraciones

Demostración geométrica

Demostración del teorema de Ptolomeo
  1. Sea ABCD un cuadrilátero cíclico.
  2. Note que en el segmento BC, ángulos inscritos ∠BAC = ∠BDC, y en AB, ∠ADB = ∠ACB.
  3. Ahora, por ángulos comunes △ABK es semejante a △DBC, y △ABD ∼ △KBC
  4. Por lo tanto AK/AB = CD/BD, y CK/BC = DA/BD,
    1. Por lo tanto AK·BD = AB·CD, y CK·BD = BC·DA;
    2. Lo que implica AK·BD + CK·BD = AB·CD +BC·DA
    3. Es decir, (AK+CK)·BD = AB·CD + BC·DA;
    4. Pero AK+CK = AC, por lo tanto AC·BD = AB·CD + BC·DA; como se quería demostrar.

Note que la demostración es válida sólo para cuadriláteros concíclicos simples. Si el cuadrilátero es complejo entonces K se encontrará fuera del segmento AC, y por lo tanto AK-CK=±AC, tal como se esperaba.

Existe una generalización de este teorema llamado el teorema de Casey, que involucra a cuatro circunferencias no secantes y tangentes interiores a una quinta.

El teorema de Ptolomeo se puede demostrar con métodos de inversión geométrica con respecto a cualquier vértice de un cuadrilátero.[1]


~== Ejemplo ==

La razón dorada se obtiene de la aplicación del teorema de Ptolomeo

Considere un pentágono regular y la circunferencia circunscrita al mismo. En el cuadrilátero ABCD las diagonales son iguales al lado AD. El teorema de Ptolomeo arroja en este caso,

 b^2 = a b + a^2.\

Dividiendo entre a2 se tiene

 \frac{b^2}{a^2} = 1 + \frac{b}{a}.\

Denotando con φ la razón b/a obtenemos φ2 = 1 + φ, ecuación que conicide con la definición de la razón dorada.

\varphi={{1+\sqrt{5}}\over 2}

Referencias

  1. Adam Puig Curso de Geometría Métrica, Tomo 1 ISBN 84-85731-03-4.

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?

Mira otros diccionarios:

  • Teorema de Casey — En geometría, el teorema de Casey es una generalización del teorema de Ptolomeo, llamado así por el matemático John Casey (1820 1891). Formulación del teorema Sea …   Wikipedia Español

  • Número áureo — Para el número de astronomía, ver Número áureo (astronomía) El número áureo o de oro (también llamado número plateado, razón extrema y media,[1] razón áurea, razón dorada, media áurea, proporción áurea y divina proporción) representado por la… …   Wikipedia Español

  • Número π — π (pi) es la relación entre la longitud de una circunferencia y su diámetro, en geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería. El… …   Wikipedia Español

  • Cuadrilátero cíclico — Saltar a navegación, búsqueda Cuadrilátero cíclico. Se dice que un cuadrilátero es cíclico si sus cuatro vértices se encuentran en una misma circunferencia. Para un cuadrilátero convexo, una condición necesaria y suficiente para qué sea cíclico… …   Wikipedia Español

  • Matemática en el Islam medieval — Saltar a navegación, búsqueda Contenido 1 Valoración de la ciencia islámica 2 Desarrollos y contexto histórico 3 Otros ejemplos de desarrollo …   Wikipedia Español

  • Matemática en el islam medieval — Tratado de arte numeral de Joannis de Sacro Bosco. La matemática árabe se enriqueció en forma creciente a medida que los musulmanes conquistaron territorios. Con rapidez inusitada, el islamismo se expandió en todo el territorio que se extiende… …   Wikipedia Español

  • Menelao de Alejandría — (c. 70 d.C. – 140 d.C.) fue un matemático y astrónomo griego, que trabajó en Alejandría y en Roma a finales del siglo I. Fue el primero en reconocer a las geodésicas en una superficie curva como análogas naturales de las líneas rectas y en… …   Wikipedia Español

  • Ciencia — La ciencia (del latín scientia conocimiento ) es el conjunto de conocimientos sistemáticamente estructurados, y susceptibles de ser articulados unos con otros. El árbol de la ciencia. Interpretación bíblica Contenido …   Wikipedia Español

  • Ciencia medieval — Dios creando el universo a través de principios geométricos. Frontispicio de la Bible Moralisée, 1215 …   Wikipedia Español

  • Aritmética — Este artículo trata sobre la aritmética elemental. Para otros usos de este término, véase teoría de números. Alegoría de la Aritmética. Pintura de Laurent de La Hyre. La aritmética (del lat. arithmetĭcus, y este del gr. ἀριθμητικός …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”