Teorema de sustitución

Teorema de sustitución

El Teorema de Sustitución establece lo siguiente:

"Si la Tensión o la corriente a través de cualquier red de CD bilateral son conocidos, esta rama puede ser reemplazada por cualquier combinación de elementos que mantendrá la misma Tensión y la misma Corriente de la rama escogida".

Figura 1.

De manera mas simple el teorema establece que para la equivalencia de rama, la Tensión y la Corriente en las terminales a y b deben ser los mismos. Considerando el circuito de la figura 1 en donde la Tensión y la Corriente a través de la rama a-b están determinados. En la figura 2 se muestran varias ramas equivalentes a-a' obtenidas gracias al uso del Teorema de Sustitución.

Figura 2 Ramas Equivalentes.


Observe que para cada rama equivalente, la tensión en las terminales y la corriente son los mismos, también considere que la respuesta del resto del circuito de la figura 1 no cambia, al sustituir cualquiera de las ramas equivalentes.Como se mostro para las ramas equivalentes de una sola fuente de la figura 2 una diferencia de potencial y una corriente conocidas en una red pueden ser reemplazadas por una fuente de tensión y una fuente de corriente respectivamente.

Debe comprenderse que este teorema no debe ser utilizado para resolver redes con dos o más fuentes que no estén en serie o en paralelo. Para aplicarlo, un valor de diferencia de potencial o de corriente debe ser conocido o encontrado usando alguna tecnica de análisis de circuitos eléctricos.

Una aplicacion del teorema de sustitución se muestra en la figura 3 ; Observe que en la figura, la diferencia de potencial conocida V fue reemplazada por una fuente de tensión, permitiendo aislar la porción de red que incluye R3, R4 y R5.

Figura 3 Demostración del efecto de conocer una tensión en algún punto en una red compleja.

La equivalencia de la fuente de corriente de la red anterior se muestra en la figura 4, donde una corriente conocida es reemplazada por una fuente ideal de corriente permitiendo aislar R4 y R5.

Figura 4 Demostración del efecto de conocer una corriente en algún punto en una red compleja.

Las aplicaciones de este teorema son muchas y es muy utilizado en en análisis de redes complejas o circuitos electrónicos muy grandes, donde en la mayoría de los casos es posible expresar todo en circuitos equivalentes conociendo corrientes o tensiones y resistencias, una aplicación mas se da en el análisis de redes puente donde V = 0 e I = 0 se reemplazan por un corto circuito y un circuito abierto respectivamente.

Figura 5 Efecto de la utilización del Teorema de Sustitución en redes puente.

Wikimedia foundation. 2010.

Игры ⚽ Поможем написать курсовую

Mira otros diccionarios:

  • Teorema de muestreo de Nyquist-Shannon — Función de interpolación g(t) para Fs=44100 muestras por segundo (estándar CD Audio). Excepto para t=0, el intervalo entre pasos por cero (líneas verticales verdes) representa el intervalo entre muestras ( 22,68 µs para este ejemplo). El teorema… …   Wikipedia Español

  • Teorema del coseno/apéndice — Artículo principal: Teorema del coseno El objetivo de este apéndice es presentar pruebas de algunas afirmaciones usadas en el artículo Teorema del coseno, pero que por razones didácticas es preferible separar del cuerpo principal, ya que… …   Wikipedia Español

  • Integración por sustitución trigonométrica — Este artículo o sección debería estar en Wikilibros ya que es una guía o manual en vez de contenido enciclopédico. [ver página en Wikilibros] Si modificas el texto dándole una orientación más enciclopédica, por favor quita este aviso …   Wikipedia Español

  • Teoremas de circuitos eléctricos — Saltar a navegación, búsqueda Los teoremas de circuitos eléctricos son aquellas técnicas derivadas de las leyes de Kirchoff y la ley de Ohm que permiten resolver de una manera más simple cierto tipo de circuitos. Algunos con aplicaciones más… …   Wikipedia Español

  • Métodos de integración — Este artículo o sección necesita ser wikificado con un formato acorde a las convenciones de estilo. Por favor, edítalo para que las cumpla. Mientras tanto, no elimines este aviso. También puedes ayudar wikificando otros artículos o cambiando este …   Wikipedia Español

  • Ecuación diferencial ordinaria — Saltar a navegación, búsqueda En matemáticas, una ecuación diferencial ordinaria (comúnmente abreviada EDO ) es una relación que contiene funciones de una sola variable independiente, y una o más de sus derivadas con respecto a esa variable. Las… …   Wikipedia Español

  • Cálculo — Saltar a navegación, búsqueda Para otros usos de este término, véase Cálculo (desambiguación). Para cálculo infinitesimal (diferencial o integral) véase Cálculo infinitesimal Para el estudio de los números reales, los complejos, los vectores y… …   Wikipedia Español

  • Integración — La integral definida de una función representa el área limitada por la gráfica de la función, con signo positivo cuando la función toma valores positivos y negativo cuando toma valores negativos. Para otros usos de este término, véase Integración …   Wikipedia Español

  • Inferencia bayesiana — La inferencia bayesiana se aplica a muchos dominios de la teoría de la decisión La inferencia bayesiana es un tipo de inferencia estadística en la que las evidencias u observaciones se emplean para actualizar o inferir la probabilidad de que una… …   Wikipedia Español

  • Aritmética modular — Saltar a navegación, búsqueda Cubierta de la edición original de Disquisitiones arithmeticae de Gauss, libro fundamental de la aritmética modular. En matemática, la aritmética modular es un sistema aritmético para clases de equivalencia((Clase de …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”