Conjetura de Cramér

Conjetura de Cramér

En teoría de números, la conjetura de Cramér, formulada por el matemático sueco Harald Cramér en 1936,[1] dice que

\limsup_{n\rightarrow\infty} \frac{p_{n+1}-p_n}{(\log p_n)^2} = 1

donde pn denota el n-ésimo número primo y "log" denota el logaritmo natural. Esta conjetura aún no ha sido demostrada ni refutada, y es improbable que lo sea en un futuro cercano. Se fundamenta en un modelo probabilístico (en esencia, una heurística) de los números primos, en el cual se presupone que la probabilidad de que un número natural sea primo es \tfrac{1}{\log x}. Este modelo se conoce como el modelo de Cramér de los números primos. De ahí, se puede demostrar que la conjetura es cierta con probabilidad uno.[2]

Shanks conjeturó la igualdad asintótica de diferencias maximales entre primos consecutivos, un enunciado más fuerte.[3]

También Cramér formuló otra conjetura sobre diferencias entre primos consecutivos:

p_{n+1}-p_n = \mathcal{O}(\sqrt{p_n}\,\log p_n)

que demostró presuponiendo la (aún por demostrar) hipótesis de Riemann.

Además, E. Westzynthius demostró en 1931 que[4]

\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{\log p_n}=\infty.

Conjetura de Cramér-Granville

Puede que la conjetura de Cramér sea demasiado fuerte. Andrew Granville conjeturó en 1995[5] que existe una cota M para la cual pn + 1pn < M(log pn)2. Maier propuso  M=2e^{-\gamma}\approx1.1229\ldots.\

Nicely[6] ha calculado muchas diferencias grandes entre primos consecutivos. Ha medido la compatibilidad con la conjetura de Cramér midiendo la razón R entre el logaritmo de un número primo y la raíz cuadrada de la diferencia con el siguiente. «Para las mayores diferencias maximales que se conocen», dice, «R se ha mantenido cerca de 1,13», lo que muestra que, al menos entre los números que ha observado, el refinamiento de Granville de la conjetura de Cramér parece ajustarse bien a los datos.

Véase también

Referencias

  1. Harald Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arithmetica 2 (1936), pp. 23–46.
  2. David Hawkins, "The Random Sieve", Mathematics Magazine 31 (1957), pp. 1–3.
  3. Daniel Shanks, "On Maximal Gaps between Successive Primes", Mathematics of Computation 18, No. 88 (1964), pp. 646–651.
  4. E. Westzynthius, Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind, Commentationes Physico-Mathematicae Helingsfors, 5 (1931), pp. 1–37.
  5. A. Granville, "Harald Cramér and the distribution of prime numbers", Scandinavian Actuarial J. 1 (1995), 12—28. [1]
  6. Nicely, Thomas R. (1999), «New maximal prime gaps and first occurrences», Mathematics of Computation 68 (227): 1311–1315, doi:10.1090/S0025-5718-99-01065-0, Plantilla:MR, http://www.trnicely.net/gaps/gaps.html .

Wikimedia foundation. 2010.

Игры ⚽ Нужна курсовая?

Mira otros diccionarios:

  • Conjetura de Andrica — Archivo:Andrica conjecture1.PNG An para los 100 primeros números primos. Archivo:Andrica conjecture2.PNG An para los 200 primeros números primos. Archivo:Andrica conjecture3.PNG An para los 500 primeros números primos. La conjetura de Andrica… …   Wikipedia Español

  • Conjetura de Legendre — La conjetura de Legendre, enunciada por de Adrien Marie Legendre, afirma que siempre existe un número primo entre n2 y (n + 1)2. Esta conjetura forma parte de los problemas de Landau. Chen Jingrun demostró en 1965 que siempre existe un número… …   Wikipedia Español

  • Número primo — Un número primo es un número natural mayor que 1, que tiene únicamente dos divisores distintos: él mismo y el 1. Se contraponen así a los números compuestos, que son aquellos que tienen algún divisor natural aparte de sí mismos y del 1. El número …   Wikipedia Español

  • Agujero de gusano — Para otros usos de este término, véase Gusano (desambiguación). Esquema de un agujero de gusano que permite técnicamente el viaje a través del tiempo. En física, un agujero de gusano, también conocido como un puente de Einstein Rosen y en malas… …   Wikipedia Español

  • Retrocausalidad — Saltar a navegación, búsqueda …   Wikipedia Español

  • Frentanos — Pueblos del Samnio Información Idioma Osco …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”