Desviación estándar

Desviación estándar

Desviación estándar

La desviación estándar o desviación típica (σ) es una medida de centralización o dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva.

Se define como la raíz cuadrada de la varianza. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.

Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la desviación que representan los datos en su distribución respecto de la media aritmética de dicha distribución, con objeto de tener una visión de los mismos más acorde con la realidad a la hora de describirlos e interpretarlos para la toma de decisiones.

Contenido

Formulación

La varianza representa la media aritmética de las desviaciones con respecto a la media que son elevadas al cuadrado.

Si atendemos a la colección completa de datos (la población en su totalidad) obtenemos la varianza poblacional; y si por el contrario prestamos atención sólo a una muestra de la población, obtenemos en su lugar la varianza muestral. Las expresiones de estas medidas son las que aparecen a continuación.

Expresión de la varianza muestral:

 {S_X^2} = \frac{ \sum\limits_{i=1}^n \left( X_i - \overline{X} \right) ^ 2 }{n-1}

Expresión de la varianza poblacional:

 {\sigma^2} = \frac{ \sum\limits_{i=1}^N \left( X_i - {\mu} \right) ^ 2 }{N}

Expresión de la desviación estándar poblacional:

 \sqrt{{\sigma^2}} =\sqrt{{\frac{ \sum\limits_{i=1}^N \left( X_i - {\mu} \right) ^ 2 }{N}}}

El término desviación estándar fue incorporado a la estadística por Karl Pearson en 1894.

Por la formulación de la varianza podemos pasar a obtener la desviación estándar, tomando la raíz cuadrada positiva de la varianza. Así, si efectuamos la raíz de la varianza muestral, obtenemos la desviación típica muestral; y si por el contrario, efectuamos la raíz sobre la varianza poblacional, obtendremos la desviación típica poblacional.

Desviaciones estándar en una distribución normal.

Expresión de la desviación estándar muestral:

 \sqrt{s^2} =\sqrt{{ \frac{ \sum\limits_{i=1}^n \left( x_i - \overline{x} \right) ^ 2 }{n-1}}}

También puede ser tomada como

S = \sqrt{\frac{a-s^2/n}{n-1}}

con a como \sum_{i=1}^n x_i^2 y s como \sum_{i=1}^n x_i

Interpretación y aplicación

La desviación estándar es una medida del grado de dispersión de los datos con respecto al valor promedio. Dicho de otra manera, la desviación estándar es simplemente el "promedio" o variación esperada con respecto a la media aritmética.

Por ejemplo, las tres muestras (0, 0, 14, 14), (0, 6, 8, 14) y (6, 6, 8, 8) cada una tiene una media de 7. Sus desviaciones estándar son 8.08, 5.77 y 1.15, respectivamente. La tercera muestra tiene una desviación mucho menor que las otras dos porque sus valores están más cerca de 7.

La desviación estándar puede ser interpretada como una medida de incertidumbre. La desviación estándar de un grupo repetido de medidas nos da la precisión de éstas. Cuando se va a determinar si un grupo de medidas está de acuerdo con el modelo teórico, la desviación estándar de esas medidas es de vital importancia: si la media de las medidas está demasiado alejada de la predicción (con la distancia medida en desviaciones estándar), entonces consideramos que las medidas contradicen la teoría. Esto es coherente, ya que las mediciones caen fuera del rango de valores en el cual sería razonable esperar que ocurrieran si el modelo teórico fuera correcto. La desviación estándar es uno de tres parámetros de ubicación central; muestra la agrupación de los datos alrededor de un valor central (la media o promedio).

Desglose

La desviación estándar (DS/DE), también llamada como desviación típica, es una medida de dispersión usada en estadística que nos dice cuánto tienden a alejarse los valores puntuales del promedio en una distribución. De hecho, específicamente, la desviación estándar es "el promedio de la distancia de cada punto respecto del promedio". Se suele representar por una S o con la letra sigma, \sigma^{}_{}.

La desviación estándar de un conjunto de datos es una medida de cuánto se desvían los datos de su media. Esta medida es más estable que el recorrido y toma en consideración el valor de cada dato.

Es posible calcular la desviación estándar de una variable aleatoria continua como la raíz cuadrada de la integral

{\sigma}^2 = \int_{-\infty}^\infty {(x - \mu)}^2 f(x) dx

donde

\mu = \int_{-\infty}^\infty x f(x) dx
  • La DS es la raíz cuadrada de la varianza de la distribución
\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n
 \left( x_i - \overline{x} \right) ^ 2

Así la varianza es la media de los cuadrados de las diferencias entre cada valor de la variable y la media aritmética de la distribución.

Aunque esta fórmula es correcta, en la práctica interesa realizar inferencias poblacionales, por lo que en el denominador en vez de n, se usa n-1 (Corrección de Bessel)

s^2 = \frac{ \sum_{i=1}^n \left( x_i - \overline{x} \right) ^ 2 }{n-1}

También hay otra función más sencilla de realizar y con menos riesgo de tener equivocaciones :

s^2 = \frac{ \sum_{i=1}^n x_i^2 - n\overline{x}^2}{n-1}

Ejemplo

Aquí se muestra cómo calcular la desviación estándar de un conjunto de datos. Los datos representan la edad de los miembros de un grupo de niños. { 4, 1, 11, 13, 2, 7 }

1. Calcular el promedio o media aritmética \overline{x}.

\overline{x}=\frac{1}{N}\sum_{i=1}^N x_i.

En este caso, N = 6 porque hay seis datos:

x_1 = 4\,\!
x_2 = 1\,\!
x_3 = 11\,\!
x_4 = 13\,\!
x_5 = 2\,\!
x_6 = 7\,\!

i=número de datos para sacar desviación estándar

\overline{x}=\frac{1}{6}\sum_{i=1}^6 x_i       Sustituyendo N por 6
\overline{x}=\frac{1}{6} \left ( x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \right )
\overline{x}=\frac{1}{6} \left ( 4 + 1 + 11 + 13 + 2 + 7 \right )
\overline{x}= 6,33   Este es el promedio.


2. Calcular la desviación estándar \sigma\,\!

\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2}
\sigma = \sqrt{\frac{1}{5} \sum_{i=1}^6 (x_i - \overline{x})^2}       Sustituyendo N - 1 por 5 ( 6 - 1 )
\sigma = \sqrt{\frac{1}{5} \sum_{i=1}^6 (x_i - 6,33)^2}       Sustituyendo \overline{x} por 6,33


\sigma = \sqrt{\frac{1}{5} \left [ (4 - 6,33)^2 + (1 - 6,33)^2 + (11 - 6,33)^2 + (13 - 6,33)^2 +(2 - 6,33)^2 + (7 - 6,33)^2 \right ] }
\sigma = \sqrt{\frac{1}{5} \left [ (-2,33)^2 + (-5,33)^2 + 4,67^2 + 6,67^2 + (-4,33)^2 + (0,67^2) \right ] }
\sigma = \sqrt{\frac{1}{5} \left ( 5,43 + 28,4 + 21,8 + 44,5 + 18,7 + 0,449 \right ) }
\sigma = \sqrt{\frac{119,28}{5}}
\sigma = \sqrt{23,86}
\sigma = 4,88\,\!   Éste es el valor de la desviación estándar.

Véase también

Enlaces externos

Obtenido de "Desviaci%C3%B3n est%C3%A1ndar"

Wikimedia foundation. 2010.

Игры ⚽ Нужна курсовая?

Mira otros diccionarios:

  • desviación estándar — un término matemático que expresa la dispersión de una serie de valores o puntuaciones en relación con la media. Diccionario ilustrado de Términos Médicos.. Alvaro Galiano. 2010. desviación estándar (DE) [c gray](en estadística) definición… …   Diccionario médico

  • Desviación estándar — La desviación estándar es una medida de dispersión de gran utilización en la estadística descriptiva. Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la… …   Enciclopedia Universal

  • Momento estándar — En teoría de la probabilidad y estadística, el k simo momento estándar de una distribución de probabilidad es donde μk es el k simo momento centrado sobre la media y σ es la desviación estándar. Es la normalización del k simo momento centrado con …   Wikipedia Español

  • DE — Desviación estándar Disfunción erectil …   Diccionario de siglas médicas y otras abreviaturas

  • Distribución log-normal — En probabilidades y estadísticas, la distribución log normal es una distribución de probabilidad de cualquier variable aleatoria con su logaritmo normalmente distribuido (la base de una función logarítmica no es importante, ya que loga X está… …   Wikipedia Español

  • Bandas de Bollinger — Saltar a navegación, búsqueda Las Bandas de Bollinger, son una herramienta utilizada para el análisis técnico de los mercados financieros. Esta técnica fue inventada por John Bollinger en la década de los años 1980. Las Bandas de Bollinger… …   Wikipedia Español

  • Normatividad Mexicana — La Normatividad Mexicana es una serie de normas cuyo objetivo es asegurar valores, cantidades y características mínimas o máximas en el diseño, producción o servicio de los bienes de consumo entre personas morales y/o físicas, sobre todo los de… …   Wikipedia Español

  • Medidas de dispersión — Las medidas de dispersión, también llamadas medidas de variabilidad, muestran la variabilidad de una distribución, indicando por medio de un número, si las diferentes puntuaciones de una variable están muy alejadas de la mediana media. Cuanto… …   Wikipedia Español

  • Inflación cósmica — La inflación cósmica es un conjunto de propuestas en el marco de la física teórica para explicar la expansión ultrarrápida del universo en los instantes iniciales y resolver el llamado problema del horizonte. Contenido 1 Introducción 2 Motivación …   Wikipedia Español

  • Cliente liviano — Comparación en tamaño entre el Clientron U700 (un cliente liviano) y un computador de escritorio tradicional. Un cliente liviano o cliente ligero (thin client o slim client en inglés) es una computadora cliente o un software de cliente en una… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”