- Varianza
-
En teoría de probabilidad, la varianza (que suele representarse como σ2) de una variable aleatoria es una medida de su dispersión definida como la esperanza del cuadrado de la desviación de dicha variable respecto a su media.
Está medida en unidades distintas de las de la variable. Por ejemplo, si la variable mide una distancia en metros, la varianza se expresa en metros al cuadrado. La desviación estándar, la raíz cuadrada de la varianza, es una medida de dispersión alternativa expresada en las mismas unidades. La varianza tiene como valor mínimo 0.
Hay que tener en cuenta que la varianza puede verse muy influida por los valores atípicos y no se aconseja su uso cuando las distribuciones de las variables aleatorias tienen colas pesadas. En tales casos se recomienda el uso de otras medidas de dispersión más robustas.
El término varianza fue acuñado por Ronald Fisher en un artículo de 1918 titulado The Correlation Between Relatives on the Supposition of Mendelian Inheritance.
Contenido
Definición
Dada una variable aleatoria X con media μ = E(X), se define su varianza, Var(X) (también representada como o, simplemente σ2), como
Desarrollando la definición anterior, se obtiene la siguiente definición alternativa (y equivalente):
Si una distribución no tiene esperanza, como ocurre con la de Cauchy, tampoco tiene varianza. Existen otras distribuciones que, aun teniendo esperanza, carecen de varianza. Un ejemplo de ellas es la de Pareto cuando su índice k satisface 1 < k ≤ 2.
Caso continuo
Si la variable aleatoria X es continua con función de densidad f(x), entonces
donde
y las integrales están definidas sobre el rango de X.
Caso discreto
Si la variable aleatoria X es discreta con pesos x1 ↦ p1, ..., xn ↦ pn, entonces
donde
- .
Ejemplos
Distribución exponencial
La distribución exponencial de parámetro λ es una distribución continua con soporte en el intervalo [0,∞) y función de densidad
Tiene media μ = λ−1. Por lo tanto, su varianza es:
Es decir, σ2 = μ2.
Dado perfecto
Un dado de seis caras puede representarse como una variable aleatoria discreta que toma, valores del 1 al 6 con probabilidad igual a 1/6. El valor esperado es (1+2+3+4+5+6)/6 = 3,5. Por lo tanto, su varianza es:
Propiedades de la varianza
Algunas propiedades de la varianza son:
- siendo a y b números reales cualesquiera. De esta propiedad se deduce que la varianza de una constante es cero, es decir,
- , donde Cov(X,Y) es la covarianza de X e Y.
- , donde Cov(X,Y) es la covarianza de X e Y.
Varianza muestral
En muchas situaciones es preciso estimar la varianza de una población a partir de una muestra. Si se toma una muestra con reemplazamiento de n valores de ella, de entre todos los estimadores posibles de la varianza de la población de partida, existen dos de uso corriente:
y
Cuando los datos están agrupados:
A los dos (cuando está dividido por n y cuando lo está por n-1) se los denomina varianza muestral. Difieren ligeramente y, para valores grandes de n, la diferencia es irrelevante. El primero traslada directamente la varianza de la muestra al de la población y el segundo es un estimador insesgado de la varianza de la población. De hecho,
mientras que
Propiedades de la varianza muestral
Como consecuencia de la igualdad , s2 es un estadístico insesgado de σ2. Además, si se cumplen las condiciones necesarias para la ley de los grandes números, s2 es un estimador consistente de σ2.
Más aún, cuando las muestras siguen una distribución normal, por el teorema de Cochran, s2 tiene la distribución chi-cuadrado:
Véase también
- Desviación típica o desviación estándar
- Esperanza matemática o valor esperado
- Covarianza
- Análisis de varianza
Enlaces externos
- [1]Simulación de la varianza de una variable discreta con R (lenguaje de programación)
Categorías:- Dispersión estadística
- Teoría de probabilidades
- Análisis de datos
Wikimedia foundation. 2010.