- Función de Chebyshov
-
En matemáticas, la función de Chebyshov es alguna de dos funciones relacionadas. La primera función de Chebyshov ϑ(x) o θ(x) se expresa como:
con el sumatorio comprendiendo todos los números primos p menores que x. La segunda función de Chebyshov ψ(x) se define como:
donde Λ es la función de von Mangoldt. Se usa frecuentemente la función de Chebyshov en pruebas relacionadas con los números primos, ya que es más fácil de usar que la función contadora de primos, π(x). Ambas funciones son asintóticas a x, lo cual equivale al teorema de los números primos.
Ambas funciones se llaman así en recuerdo de Pafnuti Chebyshov.
Contenido
Propiedades
Un teorema de Erhard Schmidt asegura que, para cualquier real, positivo K, existen valores de x tal que
y
se cumple en infinitas ocasiones.[1] La plantilla {{ref}} está obsoleta, véase el nuevo sistema de referencias.[2] La plantilla {{ref}} está obsoleta, véase el nuevo sistema de referencias. En notación O, podríamos expresar lo anterior como
Hardy y Littlewood[3] La plantilla {{ref}} está obsoleta, véase el nuevo sistema de referencias. probaron un resultado mas fuerte:
Relaciones
La segunda función de Chebyshov puede relacionarse con la primera escribiéndola como
donde k es el único entero que cumple pero pk + 1 > x. Una relación más directa es la dada por
Nótese que este última suma sólo tiene un número finito de sumandos que no se cancelan, ya que
- para n > log 2x.
La segunda función de Chebyshov es el logaritmo del mínimo común múltiplo de los enteros comprendidos entre 1 y n.
Relación con la función Π(x)
La función de Chebyshov puede ser relacionada con la función π(x) de la siguiente manera. Defina
Entonces
La relación entre Π(x) y la función contadora de primos, π(x), se tiene en la siguiente ecuación
Ciertamente , de manera que la última relación se puede escribir en la forma
Relación con los primordiales
La primera función de Chebyshov es el logaritmo de el primorial de x, denotado por x#:
Esto prueba que el primordial x# es asintóticamente igual a exp((1+o(1))x), donde "o" es el símbolo de Landau (ó notación o-pequeña, véase notación O) y junto con el teorema de los números primos, establece un comportamiento asintótico de pn#.
Relación con la función suavizante
La función suavizante se define como
Se puede demostrar que
Una fórmula exacta
En 1895, Hans Carl Friedrich von Mangoldt halló[4] La plantilla {{ref}} está obsoleta, véase el nuevo sistema de referencias. una expresión explícita para ψ(x), que contiene una suma sobre los ceros no triviales de la función zeta de Riemann:
donde ρ recorre todos los ceros no triviales de la función zeta, y
En la serie de Taylor para el logaritmo, el último término de la fórmula explícita puede ser interpretado como el sumatorio de − xω / ω sobre todos los ceros no triviales de la función zeta, , es decir,
Comportamiento asintótico
Pierre Dusart[5] La plantilla {{ref}} está obsoleta, véase el nuevo sistema de referencias. probó los siguientes comportamientos asintóticos para las funciones de Chebyshov:
- para k' ≥ exp(22)
- para k ≥ 198
- para k ≥ 198
- para x ≥ 10.544.111
- para x ≥ exp(22)
- para x ≥ exp(30)
Estas anteriores, junto con , dan una buena caracterización de estas dos funciones.
Aplicación a la formulación variacional
La función de Chebyshov evaluada en x = exp(t) minimiza el funcional
entonces
para c > 0.
Referencias
- ↑ Esta plantilla está obsoleta, véase el nuevo sistema de referencias. Pierre Dusart, "Sharper bounds for ψ, θ, π, pk", Rapport de recherche n° 1998-06, Université de Limoges. An abbreviated version appeared as "The kth prime is greater than k(ln k + ln ln k - 1) for k ≥ 2", Mathematics of Computation, Vol. 68, No. 225 (1999), pp. 411–415.
- ↑ Esta plantilla está obsoleta, véase el nuevo sistema de referencias.Erhard Schmidt, "Über die Anzahl der Primzahlen unter gegebener Grenze", Mathematische Annalen, 57 (1903), pp.195-204.
- ↑ Esta plantilla está obsoleta, véase el nuevo sistema de referencias.G.H. Hardy and J.E. Littlewood, "Contributions to the Theory of the Riemann Zeta-Function and the Theory of the Distribution of Primes", Acta Mathematica, 41(1916) pp.119-196.
- ↑ Esta plantilla está obsoleta, véase el nuevo sistema de referencias.Davenport, Harold (2000). In Multiplicative Number Theory. Springer. p. 104. ISBN 0-387-95097-4. Google Book Search.
Enlaces externos
Categorías:- Funciones aritméticas
- Funciones especiales
Wikimedia foundation. 2010.