Modus ponendo ponens

Modus ponendo ponens

En lógica, modus ponendo ponens (en latín, modo que afirmando afirma), también llamado modus ponens y generalmente abreviado MPP o MP, es una regla de inferencia que tiene la siguiente forma:

Si A, entonces B
A
Por lo tanto, B

Por ejemplo, un razonamiento que sigue la forma del modus ponens podría ser:

Si está soleado, entonces es de día.
Está soleado.
Por lo tanto, es de día.

Otro ejemplo sería

Si Javier tiene rabia, es una nube.
Javier tiene rabia.
Por lo tanto, Javier es una nube.

Otra manera de presentar el modus ponens con el condicional es:


   \begin{array}{r}
      A \to B \\
      A  \\
      \hline
      B
   \end{array}

Y aún otra manera es a través de la notación del cálculo de secuentes: Con condicional:


   (A \to B), A \vdash B

En la axiomatización de la lógica proposicional propuesta por Jan Łukasiewicz, el modus ponens es la única regla de inferencia primitiva. Esto ha motivado que mucha de la discusión en torno al problema de la justificación de la deducción se haya centrado en la justificación del modus ponens.

Véase también


Wikimedia foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Mira otros diccionarios:

  • Modus ponendo ponens — Der Modus ponens ist eine schon in der antiken Logik geläufige Schlussfigur, die in vielen logischen Systemen (siehe Logik, Kalkül) als Schlussregel verwendet wird. Der Modus ponens erlaubt es, aus zwei Aussagen der Form Wenn A, dann B und A (den …   Deutsch Wikipedia

  • Modus tollendo ponens — (literally: mode which, by denying, affirms ) [Stone, Jon R. 1996. Latin for the Illiterati: Exorcizing the Ghosts of a Dead Language . London, UK: Routledge: 60.] , or MTP, is a valid, simple argument form that is today known as disjunctive… …   Wikipedia

  • Modus tollendo ponens — Der Modus tollendo ponens oder Disjunktive Syllogismus ist eine Schlussfigur der klassischen Aussagenlogik bzw. eine Schlussregel vieler logischer Kalküle, die es erlaubt, aus einem Satz der Form A oder B und einem Satz der Form Nicht A auf einen …   Deutsch Wikipedia

  • Modus tollendo ponens — En lógica, el silogismo disyuntivo, históricamente conocido como modus tollendo ponens (en latín, modo que negando afirma) o MTP, es una forma válida de argumento: es el caso que A, o es el caso que B No A Por lo tanto, B o exclusivo: O es el… …   Wikipedia Español

  • Modus ponendo tollens — Der Modus ponendo tollens ist eine Schlussfigur der klassischen Aussagenlogik bzw. eine Schlussregel vieler logischer Kalküle, die es erlaubt, aus einem Satz der Form nicht (A und B) und einem Satz der Form A auf einen Satz der Form nicht B zu… …   Deutsch Wikipedia

  • Modus ponendo tollens — En lógica, el modus ponendo tollens (en latín, modo que afirmando niega) o MPT es una forma válida de argumento que dice: O bien A, o bien B A Por lo tanto, no B Por ejemplo, un razonamiento que sigue la forma del modus ponendo tollens podría ser …   Wikipedia Español

  • Modus ponendo tollens — Rules of inference Propositional calculus Modus ponens (A→B, A ⊢ B) Modus tollens (A→B, ¬B ⊢ ¬A) …   Wikipedia

  • Modus Tollens — (lat. für: Modus des Aufhebens, wörtlich: aufhebender Modus), eigentlich Modus tollendo tollens (in Abgrenzung zum Modus ponendo tollens) ist eine Schlussfigur, die auch in etlichen Kalkülen der klassischen Logik als Schlussregel verwendet wird.… …   Deutsch Wikipedia

  • Modus tollendo tollens — Modus tollens (lat. für: Modus des Aufhebens, wörtlich: aufhebender Modus), eigentlich Modus tollendo tollens (in Abgrenzung zum Modus ponendo tollens) ist eine Schlussfigur, die auch in etlichen Kalkülen der klassischen Logik als Schlussregel… …   Deutsch Wikipedia

  • Modus tollens — (lat. für: Modus des Aufhebens, wörtlich: aufhebender Modus), eigentlich Modus tollendo tollens (in Abgrenzung zum Modus ponendo tollens) ist eine Schlussfigur, die auch in etlichen Kalkülen der klassischen Logik als Schlussregel verwendet wird.… …   Deutsch Wikipedia

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”