Transmission Control Protocol

Transmission Control Protocol
Para otros usos de este término, véase TCP (desambiguación).
Transmission Control Protocol
(TCP)
Familia: Familia de protocolos de Internet
Función: Transporte confiable y bidireccional de datos.

Ubicación en la pila de protocolos
Aplicación ftp, http, SNMP, DNS, ...
Transporte TCP
Red IP
Enlace Ethernet, Token Ring,
FDDI, ...

Estándares: RFC 793 (1981)

RFC 1323 (1992)

Transmission Control Protocol (en español Protocolo de Control de Transmisión) o TCP, es uno de los protocolos fundamentales en Internet. Fue creado entre los años 1973 y 1974 por Vint Cerf y Robert Kahn.

Muchos programas dentro de una red de datos compuesta por computadoras pueden usar TCP para crear conexiones entre ellos a través de las cuales puede enviarse un flujo de datos. El protocolo garantiza que los datos serán entregados en su destino sin errores y en el mismo orden en que se transmitieron. También proporciona un mecanismo para distinguir distintas aplicaciones dentro de una misma máquina, a través del concepto de puerto.

TCP da soporte a muchas de las aplicaciones más populares de Internet (navegadores, intercambio de ficheros, clientes ftp, ...) y protocolos de aplicación HTTP, SMTP, SSH y FTP.

Contenido

Información Técnica

TCP es un protocolo de comunicación orientado a conexión y fiable del nivel de transporte, actualmente documentado por IETF en el RFC 793. Es un protocolo de capa 4 según el modelo OSI.

Funciones de TCP

En la pila de protocolos TCP/IP, TCP es la capa intermedia entre el protocolo de internet (IP) y la aplicación. Habitualmente, las aplicaciones necesitan que la comunicación sea fiable y, dado que la capa IP aporta un servicio de datagramas no fiable (sin confirmación), TCP añade las funciones necesarias para prestar un servicio que permita que la comunicación entre dos sistemas se efectúe libre de errores, sin pérdidas y con seguridad.

Los servicios provistos por TCP corren en el anfitrión (host) de cualquiera de los extremos de una conexión, no en la red. Por lo tanto, TCP es un protocolo para manejar conexiones de extremo a extremo. Tales conexiones pueden existir a través de una serie de conexiones punto a punto, por lo que estas conexiones extremo-extremo son llamadas circuitos virtuales.


  • Orientado a la conexión: dos computadoras establecen una conexión para intercambiar datos. Los sistemas de los extremos se sincronizan con el otro para manejar el flujo de paquetes y adaptarse a la congestión de la red.
  • Operación Full-Dúplex: una conexión TCP es un par de circuitos virtuales, cada uno en una dirección. Sólo los dos sistemas finales sincronizados pueden usar la conexión.
  • Error Checking: una técnica de checksum es usada para verificar que los paquetes no estén corruptos.
  • Acknowledgements: sobre recibo de uno o más paquetes, el receptor regresa un acknowledgement (reconocimiento) al transmisor indicando que recibió los paquetes. Si los paquetes no son notificados, el transmisor puede reenviar los paquetes o terminar la conexión si el transmisor cree que el receptor no está más en la conexión.
  • Control de flujo: si el transmisor está desbordando el buffer del receptor por transmitir demasiado rápido, el receptor descarta paquetes. Los acknowledgement fallidos que llegan al transmisor le alertan para bajar la tasa de transferencia o dejar de transmitir.
  • Servicio de recuperación de Paquetes: el receptor puede pedir la retransmisión de un paquete. Si el paquete no es notificado como recibido (ACK), el transmisor envía de nuevo el paquete.

Los servicios confiables de entrega de datos son críticos para aplicaciones tales como transferencias de archivos (FTP por ejemplo), servicios de bases de datos, proceso de transacciones y otras aplicaciones de misión crítica en las cuales la entrega de cada paquete debe ser garantizada.

Formato de los Segmentos TCP

En el nivel de transporte, los paquetes de bits que constituyen las unidades de datos de protocolo TCP se llaman "segmentos". El formato de los segmentos TCP se muestra en el siguiente esquema:

+ Bits 0 - 3 4 - 7 8 - 15 16 - 31
0 Puerto Origen Puerto Destino
32 Número de Secuencia
64 Número de Acuse de Recibo (ACK)
96 longitud cabecera TCP Reservado Flags Ventana
128 Suma de Verificación (Checksum) Puntero Urgente
160 Opciones + Relleno (opcional)
192  
Datos
 

Las aplicaciones envían flujos de bytes a la capa TCP para ser enviados a la red. TCP divide el flujo de bytes llegado de la aplicación en segmentos de tamaño apropiado (normalmente esta limitación viene impuesta por la unidad máxima de transferencia (MTU) del nivel de enlace de datos de la red a la que la entidad está asociada) y le añade sus cabeceras. Entonces, TCP pasa el segmento resultante a la capa IP, donde a través de la red, llega a la capa TCP de la entidad destino. TCP comprueba que ningún segmento se ha perdido dando a cada uno un número de secuencia, que es también usado para asegurarse de que los paquetes han llegado a la entidad destino en el orden correcto. TCP devuelve un asentimiento por bytes que han sido recibidos correctamente; un temporizador en la entidad origen del envío causará un timeout si el asentimiento no es recibido en un tiempo razonable, y el (presuntamente desaparecido) paquete será entonces retransmitido. TCP revisa que no haya bytes dañados durante el envío usando un checksum; es calculado por el emisor en cada paquete antes de ser enviado, y comprobado por el receptor.

  • Puerto de origen (16 bits): Identifica el puerto a través del que se envía.
  • Puerto destino (16 bits): Identifica el puerto del receptor.
  • Número de secuencia (32 bits): Sirve para comprobar que ningún segmento se ha perdido, y que llegan en el orden correcto. Su significado varía dependiendo del valor de SYN:
  • Si el flag SYN está activo (1), entonces este campo indica el número inicial de secuencia (con lo cual el número de secuencia del primer byte de datos será este número de secuencia más uno).
  • Si el flag SYN no está activo (0), entonces este campo indica el número de secuencia del primer byte de datos.
  • Número de acuse de recibo (ACK) (32 bits): Si el flag ACK está puesto a activo, entonces este campo contiene el número de secuencia del siguiente paquete que el receptor espera recibir.
  • Longitud de la cabecera TCP (4 bits): Especifica el tamaño de la cabecera TCP en palabras de 32-bits. El tamaño mínimo es de 5 palabras, y el máximo es de 15 palabras (lo cual equivale a un tamaño mínimo de 20 bytes y a un máximo de 60 bytes). En inglés el campo se denomina “Data offset”, que literalmente sería algo así como “desplazamiento hasta los datos”, ya que indica cuántos bytes hay entre el inicio del paquete TCP y el inicio de los datos.
  • Reservado (4 bits): Bits reservados para uso futuro, deberían ser puestos a cero.
  • Bits de control (flags) (8 bits): Son 8 flags o banderas. Cada una indica “activa” con un 1 o “inactiva” con un 0.
  • CWR o “Congestion Window Reduced” (1 bit): Este flag se activa (se pone a 1) por parte del emisor para indicar que ha recibido un paquete TCP con el flag ECE activado. El flag ECE es una extensión del protocolo que fue añadida a la cabecera en el RFC 3168. Se utiliza para el control de la congestión en la red.
  • ECE o “ECN-Echo” (1 bit): Indica que el receptor puede realizar notificaciones ECN. La activación de este flag se realiza durante la negociación en tres pasos para el establecimiento de la conexión. Este flag también fue añadido a la cabecera en el RFC 3168.
  • URG o “urgent” (1 bit, ver URG): Si está activo significa que el campo “Urgente” es significativo, si no, el valor de este campo es ignorado.
  • ACK o “acknowledge” (1 bit, ver ACK): Si está activo entonces el campo con el número de acuse de recibo es válido (si no, es ignorado).
  • PSH o “push” (1 bit, ver PSH): Activa/desactiva la función que hace que los datos de ese segmento y los datos que hayan sido almacenados anteriormente en el buffer del receptor deben ser transferidos a la aplicación receptora lo antes posible.
  • RST o “reset” (1 bit, ver Flag RST): Si llega a 1, termina la conexión sin esperar respuesta.
  • SYN o “synchronize” (1 bit, ver SYN): Activa/desactiva la sincronización de los números de secuencia.
  • FIN (1 bit, ver FIN): Si se activa es porque no hay más datos a enviar por parte del emisor, esto es, el paquete que lo lleva activo es el último de una conexión.
  • Ventana (16 bits): Es el tamaño de la ventana de recepción, que especifica el número de bytes que el receptor está actualmente esperando recibir.
  • Suma de verificación (checksum) (16 bits): Es una suma de verificación utilizada para comprobar si hay errores tanto en la cabecera como en los datos.
  • Puntero urgente (16 bits): Si el flag URG está activado, entonces este campo indica el desplazamiento respecto al número de secuencia que indica el último byte de datos marcados como “urgentes”.
  • Opciones (número de bits variable): La longitud total del campo de opciones ha de ser múltiplo de una palabra de 32 bits (si es menor, se ha de rellenar al múltiplo más cercano), y el campo que indica la longitud de la cabecera ha de estar ajustado de forma adecuada.
  • Datos (número de bits variable): No forma parte de la cabecera, es la carga (payload), la parte con los datos del paquete TCP. Pueden ser datos de cualquier protocolo de nivel superior en el nivel de aplicación; los protocolos más comunes para los que se usan los datos de un paquete TCP son HTTP, telnet, SSH, FTP, etc.

Funcionamiento del protocolo en detalle

Las conexiones TCP se componen de tres etapas: establecimiento de conexión, transferencia de datos y fin de la conexión. Para establecer la conexión se usa el procedimiento llamado negociación en tres pasos (3-way handshake). Para la desconexión se usa una negociación en cuatro pasos (4-way handshake). Durante el establecimiento de la conexión, se configuran algunos parámetros tales como el número de secuencia con el fin de asegurar la entrega ordenada de los datos y la robustez de la comunicación.

Establecimiento de la conexión (negociación en tres pasos)

Negociación en tres pasos o Three-way handshake

Aunque es posible que un par de entidades finales comiencen una conexión entre ellas simultáneamente, normalmente una de ellas abre un socket en un determinado puerto tcp y se queda a la escucha de nuevas conexiones. Es común referirse a esto como apertura pasiva, y determina el lado servidor de una conexión. El lado cliente de una conexión realiza una apertura activa de un puerto enviando un paquete SYN inicial al servidor como parte de la negociación en tres pasos. En el lado del servidor se comprueba si el puerto está abierto, es decir, si existe algún proceso escuchando en ese puerto. En caso de no estarlo, se envía al cliente un paquete de respuesta con el bit RST activado, lo que significa el rechazo del intento de conexión. En caso de que sí se encuentre abierto el puerto, el lado servidor respondería a la petición SYN válida con un paquete SYN/ACK. Finalmente, el cliente debería responderle al servidor con un ACK, completando así la negociación en tres pasos (SYN, SYN/ACK y ACK) y la fase de establecimiento de conexión.

Es interesante notar que existe un número de secuencia generado por cada lado, ayudando de este modo a que no se puedan establecer conexiones falseadas (spoofing).

Transferencia de datos

Durante la etapa de transferencia de datos, una serie de mecanismos claves determinan la fiabilidad y robustez del protocolo. Entre ellos están incluidos el uso del número de secuencia para ordenar los segmentos TCP recibidos y detectar paquetes duplicados, checksums para detectar errores, y asentimientos y temporizadores para detectar pérdidas y retrasos.

Durante el establecimiento de conexión TCP, los números iniciales de secuencia son intercambiados entre las dos entidades TCP. Estos números de secuencia son usados para identificar los datos dentro del flujo de bytes, y poder identificar (y contar) los bytes de los datos de la aplicación. Siempre hay un par de números de secuencia incluidos en todo segmento TCP, referidos al número de secuencia y al número de asentimiento. Un emisor TCP se refiere a su propio número de secuencia cuando habla de número de secuencia, mientras que con el número de asentimiento se refiere al número de secuencia del receptor. Para mantener la fiabilidad, un receptor asiente los segmentos TCP indicando que ha recibido una parte del flujo continuo de bytes. Una mejora de TCP, llamada asentimiento selectivo (SACK, Selective Acknowledgement) permite a un receptor TCP asentir los datos que se han recibido de tal forma que el remitente solo retransmita los segmentos de datos que faltan.

A través del uso de números de secuencia y asentimiento, TCP puede pasar los segmentos recibidos en el orden correcto dentro del flujo de bytes a la aplicación receptora. Los números de secuencia son de 32 bits (sin signo), que vuelve a cero tras el siguiente byte después del 232-1. Una de las claves para mantener la robustez y la seguridad de las conexiones TCP es la selección del número inicial de secuencia (ISN, Initial Sequence Number).

Un checksum de 16 bits, consistente en el complemento a uno de la suma en complemento a uno del contenido de la cabecera y datos del segmento TCP, es calculado por el emisor, e incluido en la transmisión del segmento. Se usa la suma en complemento a uno porque el acarreo final de ese método puede ser calculado en cualquier múltiplo de su tamaño (16-bit, 32-bit, 64-bit...) y el resultado, una vez plegado, será el mismo. El receptor TCP recalcula el checksum sobre las cabeceras y datos recibidos. El complemento es usado para que el receptor no tenga que poner a cero el campo del checksum de la cabecera antes de hacer los cálculos, salvando en algún lugar el valor del checksum recibido; en vez de eso, el receptor simplemente calcula la suma en complemento a uno con el checksum incluido, y el resultado debe ser igual a 0. Si es así, se asume que el segmento ha llegado intacto y sin errores.

Hay que fijarse en que el checksum de TCP también cubre los 96 bit de la cabecera que contiene la dirección origen, la dirección destino, el protocolo y el tamaño TCP. Esto proporciona protección contra paquetes mal dirigidos por errores en las direcciones.

El checksum de TCP es una comprobación bastante débil. En niveles de enlace con una alta probabilidad de error de bit quizá requiera una capacidad adicional de corrección/detección de errores de enlace. Si TCP fuese rediseñado hoy, muy probablemente tendría un código de redundancia cíclica (CRC) para control de errores en vez del actual checksum. La debilidad del checksum está parcialmente compensada por el extendido uso de un CRC en el nivel de enlace, bajo TCP e IP, como el usado en el PPP o en Ethernet. Sin embargo, esto no significa que el checksum de 16 bits es redundante: sorprendentemente, inspecciones sobre el tráfico de Internet han mostrado que son comunes los errores de software y hardware[cita requerida] que introducen errores en los paquetes protegidos con un CRC, y que el checksum de 16 bits de TCP detecta la mayoría de estos errores simples.

Los asentimientos (ACKs o Acknowledgments) de los datos enviados o la falta de ellos, son usados por los emisores para interpretar las condiciones de la red entre el emisor y receptor TCP. Unido a los temporizadores, los emisores y receptores TCP pueden alterar el comportamiento del movimiento de datos. TCP usa una serie de mecanismos para conseguir un alto rendimiento y evitar la congestión de la red (la idea es enviar tan rápido como el receptor pueda recibir). Estos mecanismos incluyen el uso de ventana deslizante, que controla que el transmisor mande información dentro de los límites del buffer del receptor, y algoritmos de control de flujo, tales como el algoritmo de Evitación de la Congestión (congestion avoidance), el de comienzo lento (Slow-start), el de retransmisión rápida, el de recuperación rápida (Fast Recovery), y otros.

Tamaño de ventana TCP

El tamaño de la ventana de recepción TCP es la cantidad de datos recibidos (en bytes) que pueden ser metidos en el buffer de recepción durante la conexión. La entidad emisora puede enviar una cantidad determinada de datos pero antes debe esperar un asentimiento con la actualización del tamaño de ventana por parte del receptor.

Un ejemplo sería el siguiente: un receptor comienza con un tamaño de ventana x y recibe y bytes, entonces su tamaño de ventana será (x - y) y el transmisor sólo podrá mandar paquetes con un tamaño máximo de datos de (x - y) bytes. Los siguientes paquetes recibidos seguirán restando tamaño a la ventana de recepción. Esta situación seguirá así hasta que la aplicación receptora recoja los datos del buffer de recepción.

Escalado de ventana

Para una mayor eficiencia en redes de gran ancho de banda, debe ser usado un tamaño de ventana mayor. El campo TCP de tamaño de ventana controla el movimiento de datos y está limitado a 16 bits, es decir, a un tamaño de ventana de 65.535 bytes.

Como el campo de ventana no puede expandirse se usa un factor de escalado. La escala de ventana TCP (TCP window scale) es una opción usada para incrementar el máximo tamaño de ventana desde 65.535 bytes, a 1 Gigabyte.

La opción de escala de ventana TCP es usada solo durante la negociación en tres pasos que constituye el comienzo de la conexión. El valor de la escala representa el número de bits desplazados a la izquierda de los 16 bits que forman el campo del tamaño de ventana. El valor de la escala puede ir desde 0 (sin desplazamiento) hasta 14. Hay que recordar que un número binario desplazado un bit a la izquierda es como multiplicarlo en base decimal por 2.

Fin de la conexión

Cierre de una conexión según el estándar.

La fase de finalización de la conexión usa una negociación en cuatro pasos (four-way handshake), terminando la conexión desde cada lado independientemente. Cuando uno de los dos extremos de la conexión desea parar su "mitad" de conexión transmite un paquete FIN, que el otro interlocutor asentirá con un ACK. Por tanto, una desconexión típica requiere un par de segmentos FIN y ACK desde cada lado de la conexión.

Una conexión puede estar "medio abierta" en el caso de que uno de los lados la finalice pero el otro no. El lado que ha dado por finalizada la conexión no puede enviar más datos pero la otra parte si podrá.

Puertos TCP

TCP usa el concepto de número de puerto para identificar a las aplicaciones emisoras y receptoras. Cada lado de la conexión TCP tiene asociado un número de puerto (de 16 bits sin signo, con lo que existen 65536 puertos posibles) asignado por la aplicación emisora o receptora. Los puertos son clasificados en tres categorías: bien conocidos, registrados y dinámicos/privados. Los puertos bien conocidos son asignados por la Internet Assigned Numbers Authority (IANA), van del 0 al 1023 y son usados normalmente por el sistema o por procesos con privilegios. Las aplicaciones que usan este tipo de puertos son ejecutadas como servidores y se quedan a la escucha de conexiones. Algunos ejemplos son: FTP (21), SSH (22), Telnet (23), SMTP (25) y HTTP (80). Los puertos registrados son normalmente empleados por las aplicaciones de usuario de forma temporal cuando conectan con los servidores, pero también pueden representar servicios que hayan sido registrados por un tercero (rango de puertos registrados: 1024 al 49151). Los puertos dinámicos/privados también pueden ser usados por las aplicaciones de usuario, pero este caso es menos común. Los puertos dinámicos/privados no tienen significado fuera de la conexión TCP en la que fueron usados (rango de puertos dinámicos/privados: 49152 al 65535, recordemos que el rango total de 2 elevado a la potencia 16, cubre 65536 números, del 0 al 65535)

Desarrollo de TCP

TCP es un protocolo muy desarrollado y complejo. Sin embargo, mientras mejoras significativas han sido propuestas y llevadas a cabo a lo largo de los años, ha conservado las operaciones más básicas sin cambios desde el RFC 793, publicado en 1981. El documento RFC 1122 (Host Requirements for Internet Hosts), especifica el número de requisitos de una implementación del protocolo TCP. El RFC 2581 (Control de Congestión TCP) es uno de los más importantes documentos relativos a TCP de los últimos años, describe nuevos algoritmos para evitar la congestión excesiva. En 2001, el RFC 3168 fue escrito para describir la Notificación de Congestión Explícita (ECN), una forma de eludir la congestión con mecanismos de señalización. En los comienzos del siglo XXI, TCP es usado en el 95% de todos los paquetes que circulan por Internet. Entre las aplicaciones más comunes que usan TCP están HTTP/HTTPS (World Wide Web), SMTP/POP3/IMAP (correo electrónico) y FTP (transferencia de ficheros). Su amplia extensión ha sido la prueba para los desarrolladores originales de que su creación estaba excepcionalmente bien hecha.

Recientemente, un nuevo algoritmo de control de congestión fue desarrollado y nombrado como FAST TCP (Fast Active queue management Scalable Transmission Control Protocol) por los científicos de Caltech (California Institute of Technology). Es similar a TCP Vegas en cuanto a que ambos detectan la congestión a partir de los retrasos en las colas que sufren los paquetes al ser enviados a su destino. Todavía hay un debate abierto sobre si éste es un síntoma apropiado para el control de la congestión.

Implementaciones

Artículo principal: Implementaciones de TCP

Bibliotecas de sockets TCP

Se listan algunas de las bibliotecas de comunicaciones existentes, que utilizan los protocolos TCP y UDP para distintos sistemas operativos.

  • SolarSockets Biblioteca para C++ Multiplataforma y Mutithread, gratuita para proyectos libres. Fácil de usar y con varios Ejemplos.
  • SDL NET Proporciona funciones y tipos de dato multiplataforma para programar aplicaciones que trabajen con redes.
  • C++ Sockets Library Esta es una biblioteca de clases en C++ bajo licencia GPL que 'mapea' el berkeley sockets C API, y funciona tanto en algunos sistemas unix como en win32.
  • GNU Common C++ Biblioteca de propósito general que incluye funciones de red.
  • HackNetBiblioteca de comunicaciones para crear juegos multiplayer.
  • DirectX - DirectPlay Simplifica el acceso de las aplicaciones a los servicios de comunicación...

Véase también

  • Lista de números de puerto

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужна курсовая?

Mira otros diccionarios:

  • Transmission control protocol — Pour les articles homonymes, voir TCP. Pile de protocoles 7 • Application 6 • …   Wikipédia en Français

  • transmission control protocol — (TCP) The use of common protocols enables different computer systems to exchange information over the internet. (Protocols are a set of network communication procedures that are hardware and operating system independent.) Two of the most… …   Law dictionary

  • Transmission Control Protocol — Transmission Control Protocol,   TCP/IP …   Universal-Lexikon

  • Transmission Control Protocol — The Transmission Control Protocol (TCP) is one of the core protocols of the Internet Protocol Suite. TCP is so central that the entire suite is often referred to as TCP/IP. Whereas IP handles lower level transmissions from computer to computer as …   Wikipedia

  • Transmission Control Protocol — TCP (Transmission Control Protocol) Familie: Internetprotokollfamilie Einsatzgebiet: Zuverlässiger bidirektionaler Datentransport TCP im TCP/IP‑Protokollstapel: Anwendung HTTP SMTP …   Deutsch Wikipedia

  • Transmission Control Protocol — Pour les articles homonymes, voir TCP. Pile de protocoles 7.  Application 6.  …   Wikipédia en Français

  • Transmission Control Protocol — TCP Название: Transmission Control Protocol Уровень (по модели OSI): Транспортный Семейство: TCP/IP Порт/ID: 6/IP Спецификация: RFC 793 / STD 7 Основные реализации: Linux, Windows Расширяемость …   Википедия

  • transmission control protocol — noun a protocol developed for the internet to get data from one network device to another TCP uses a retransmission strategy to insure that data will not be lost in transmission • Syn: ↑TCP • Hypernyms: ↑protocol, ↑communications protocol • Part… …   Useful english dictionary

  • Transmission Control Protocol —    Abbreviated TCP. The transport level protocol used in the TCP/IP suite of protocols. It works above IP in the protocol stack and provides reliable data delivery over connection oriented links.    TCP adds a header to the datagram that contains …   Dictionary of networking

  • Transmission Control Protocol — El Protocolo de Control de Transmisión (TCP en sus siglas en inglés, Transmission Control Protocol) es uno de los protocolos fundamentales en Internet. Muchos programas dentro de una red de ordenadores pueden usar TCP para crear conexiones entre… …   Enciclopedia Universal

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”