Teorema de la gráfica cerrada

Teorema de la gráfica cerrada

En análisis funcional, el teorema de la gráfica cerrada establece lo siguiente:

Sean X e Y dos espacios de Banach, entonces todo operador f:XY lineal cuya gráfica sea un cerrado en el espacio topológico producto X×Y es continua.

Este teorema se demuestra usando el teorema de la función abierta, y es casi imprescindible para resolver ciertos problemas de análisis funcional que no se pueden resolver con técnicas menos avanzadas.

Corolario

Tiene un corolario, que es el que se suele usar en la práctica:

Sean X e Y espacios de Banach, y f:XY un operador lineal. Supongamos que para toda sucesión (xn) convergente en X existe lim f(xn) y es igual a f(lim xn). En estas condiciones, f es continua.


Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?

Mira otros diccionarios:

  • Teorema del punto fijo de Kakutani — En análisis matemático el teorema del punto fijo de Kakutani, (llamado así en honor a Shizuo Kakutani quien lo demostró en 1941), es una generalización del teorema del punto fijo de Brouwer que describe condiciones para las cuales una función… …   Wikipedia Español

  • Teorema de la bola peluda — Si un campo vectorial sobre una esfera se simboliza por pelos de longitud constante, el teorema de la bola peluda estipula que la esfera contiene al menos un rizo. La figura contiene dos, uno en cada polo. En matemática, y más precisamente en… …   Wikipedia Español

  • Análisis funcional — Saltar a navegación, búsqueda Para otros usos de este término, véase Análisis funcional (desambiguación). El análisis funcional es la rama de las matemáticas, y específicamente del análisis, que trata del estudio de espacios de funciones. Tienen… …   Wikipedia Español

  • Ecuación de tercer grado — Gráfica de una función cúbica. Una ecuación de tercer grado con una incógnita es una ecuación que se puede poner bajo la forma canónica: , donde a, b, c y d (a ≠ 0) son números que pertenecen a un campo, usualmente el …   Wikipedia Español

  • Función W de Lambert — Gráfica de W0(x) para −1/e ≤ x ≤ 4. En matemáticas, la función W de Lambert, denominada así en honor a Johann Heinrich Lambert, si bien también se conoce como función Omega o log producto, es la función inversa de f(w) = wew donde ew es …   Wikipedia Español

  • Integración — La integral definida de una función representa el área limitada por la gráfica de la función, con signo positivo cuando la función toma valores positivos y negativo cuando toma valores negativos. Para otros usos de este término, véase Integración …   Wikipedia Español

  • Integral múltiple — Una integral múltiple es un tipo de integral definida aplicada a funciones de más de una variable real, por ejemplo, f (x, y) ó f (x, y, z). La doble integral como el volumen bajo una superficie. La región rectangular abajo de la figura es el… …   Wikipedia Español

  • Transformada de Legendre — Interpretación geométrica de la Transformada de Legendre. En matemática se dice que dos funciones diferenciables f y g son una transformada de Legendre si cada una de sus primeras derivadas son función inversa de la otra: Se dice entonces de f …   Wikipedia Español

  • Cálculo infinitesimal — Saltar a navegación, búsqueda El cálculo infinitesimal o cálculo de infinitesimales constituye una parte muy importante de la matemática moderna. Es normal en el contexto matemático, por simplificación, simplemente llamarlo cálculo. El cálculo,… …   Wikipedia Español

  • Historia de la geometría — La geometría es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto,… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”