Álgebra lineal numérica

Álgebra lineal numérica

El Álgebra lineal numérica es el estudio de algoritmos para realizar cálculos de álgebra lineal, en particular las operaciones con matrices, en las computadoras. A menudo es una parte fundamental de la ingeniería y los problemas de ciencias de la computación, tratamiento de señales, simulaciones en ciencias de materiales, la biología estructural, la minería de datos, y la bioinformática, la dinámica de fluidos, y muchas otras áreas. Este tipo de software depende en gran medida el desarrollo, análisis y aplicación de estado de los algoritmos de última generación para la solución de diversos problemas de álgebra lineal numérica, en gran parte por el papel de las matrices en diferencias finitas y métodos de elementos finitos.

Los problemas comunes en álgebra lineal numérica incluyen el cálculo de la siguiente: la factorización LU, Factorización QR, valores propios.

Referencias


Wikimedia foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Mira otros diccionarios:

  • Vector propio y valor propio — Fig. 1. En esta transformación de la Mona Lisa, la imagen se ha deformado de tal forma que su eje vertical no ha cambiado. (nota: se han recortado las esquinas en la imagen de la derecha) …   Wikipedia Español

  • Matriz (matemática) — Se ha sugerido que Teoría de Matrices sea fusionado en este artículo o sección (discusión). Una vez que hayas realizado la fusión de artículos, pide la fusión de historiales aquí. Para otros usos de este término, véase Matriz. En matemáticas, una …   Wikipedia Español

  • Subespacio de Krylov — En álgebra lineal un subespacio de Krylov de orden r generado por una matriz cuadrada A de orden n y un vector v, es el subespacio vectorial generado por Akv con k < r El nombre se debe al matemático ruso Alekséi Krylov quien publicó un… …   Wikipedia Español

  • SAGE — Saltar a navegación, búsqueda Para otros usos de este término, véase Sage (desambiguación). SAGE El interface gráfico bajo Firefox …   Wikipedia Español

  • Factorización de Schur — Saltar a navegación, búsqueda En álgebra lineal, la descomposición de Schur o triangulación de Schur es una importante descomposición matricial. Definición Si A es una matriz cuadrada sobre números complejos, entonces A puede descomponerse como… …   Wikipedia Español

  • Eliminación de Gauss-Jordan — En matemáticas, la eliminación Gaussiana, eliminación de Gauss o eliminación de Gauss Jordan, llamadas así debido a Carl Friedrich Gauss y Wilhelm Jordan, son algoritmos del álgebra lineal para determinar las soluciones de un sistema de… …   Wikipedia Español

  • Método del gradiente biconjugado estabilizado — En álgebra lineal numérica, el método del gradiente biconjugado estabilizado, generalmente abreviado como BiCGSTAB (del inglés «biconjugate gradient stabilized method»), es un método iterativo propuesto por H. A. van der Vorst para la resolución… …   Wikipedia Español

  • Analisis modal utilizando FEM — Saltar a navegación, búsqueda El objetivo del Analisis modal en la mecánica estructural es determinar las formas modales naturales y frecuencias de un objeto o estructura durante vibración libre. Es común usar el Método de los elementos finitos… …   Wikipedia Español

  • Factorización LU — Saltar a navegación, búsqueda En el álgebra lineal, la factorización o descomposición LU es una forma de factorización de una matriz como el producto de una matriz triangular inferior y una superior. Debido a la inestabilidad de éste método, por… …   Wikipedia Español

  • Algoritmo de Levinson — El algoritmo de Levinson o de Levinson Durbin es un algoritmo del álgebra lineal para calcular en forma recursiva la solución de una ecuación que involucra una matriz de Toeplitz. El costo computacional es de Θ(n2), una mejora considerable frente …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”