- Límite (sucesión de conjuntos)
-
En teoría de conjuntos, se define límite de una sucesión de conjuntos (An)n al conjunto que incluye elementos de cada uno de los subconjuntos An componentes de la sucesión. Es de utilidad en teoría de la medida, especialmente en espacios de probabilidad.[1] [2]
Contenido
Definición para sucesiones monótonas
Sea (An)n una sucesión de conjuntos, se dice que dicha sucesión es monótona creciente, y se indica como , si para todo n, perteneciente al conjunto de los números naturales, se tiene que .[3]
De la misma manera, la sucesión de conjuntos es monónota decreciente y se indica como , si para todo n, perteneciente al conjunto de los números naturales, se tiene que .[3]
Haciendo uso de operadores de conjuntos (unión, intersección), en una sucesión monótona creciente con un número fijado n se tiene que:
El límite de esta sucesión creciente se define de manera natural como:[2]
es decir, como la unión de los infinitos conjuntos An de la sucesión. Una definición similar se sigue para una sucesión monótona decreciente. Fijado un n se tiene que:
Y por tanto, el límite de esta sucesión decreciente se define como:[2]
esto es, como la intersección de los conjuntos An de la sucesión.
Cuando se cumplen estas condiciones, se dice que la sucesión de conjuntos tiene límite o que es convergente.[3]
Sucesiones generales. Límites inferior y superior
De manera más general y dada cualquier sucesión de de conjuntos, pueden definirse los límites inferior y superior construyendo dos sucesiones monótonas creciente y decreciente respectivamente:[1]
Sea una sucesión de conjuntos (An)n.
- El límite inferior es el conjunto formado por los elementos que pertenecen a todos los conjuntos de la sucesión salvo quizás un número finito de ellos:
- El límite superior es el conjunto formado por todos los elementos que pertenecen a infinitos conjuntos en la sucesión:
De las definiciones anteriores se puede obtener la relación:
En el caso de que ambos límites coincidan, se toma este conjunto común como el límite de la sucesión An:
Véase también
Referencias
- ↑ a b Quesada Paloma, Vicente; García Pérez, Alfonso (1998). «Sucesiones de conjuntos» (en castellano). Lecciones de cálculo de probabilidades (1ª edición). Madrid: Ediciones Díaz de Santos. pp. 6-11. ISBN 8486251842.
- ↑ a b c Bărboianu, Cătălin; Martilotti, Rafael (2008). «Sucesiones de conjuntos» (en castellano). Entendiendo las probabilidades y calculándolas (1ª edición). INFAROM Publishing. pp. 130-131. ISBN 9731991069.
- ↑ a b c
Enlaces externos
Wikimedia foundation. 2010.