Suma de Minkowski

Suma de Minkowski

En geometría, la suma de Minkowski es una operación sobre las partes de un espacio vectorial. A dos partes A y B asocia su conjunto suma, formado por la suma de los elementos de A y B:

A + B = \{\mathbf{a}+\mathbf{b}\,|\,\mathbf{a}\in A,\ \mathbf{b}\in B\}

La suma de dos compactos es compacta, así es posible restringir la operación a este conjunto, que puede ser provisto con una distancia llamada distancia de Hausdorff. La suma de Minkowski es entonces una operación continua. Además, respeta la convexidad, es decir, que la suma de dos convexos es convexa. La medida de la suma de dos convexos verifica una mayoración, denominada la desigualdad de Brunn-Minkowski.

La suma de Minkowski interviene en muchas áreas de las matemáticas puras y aplicadas. Esta herramienta es la base de muchas demostraciones de teoremas isoperimétricos para determinar la parte del espacio de mayor volumen posible dada como restricción la magnitud de su frontera. En la geometría euclidiana, se tienen las esferas de dimensión n. La suma de Minkowski también está involucrada al contar el número de caras de un poliedro, resolver preguntas de mosaicos o aún para estudiar la geometría de los convexos. Se aplican, por ejemplo, en cristalografía por razones de teselaciones del espacio, en economía para optimizar el potencial de producción de un grupo de empresas, o aún para estudiar las mezclas.

Contenido

Preámbulo

Ejemplos

Minkowski-sumex1.svg
Minkowski-sumex2.svg
Minkowski-sumex3.svg

El conjunto A de la izquierda es un triángulo cuyas coordenadas de sus vértices son (0, -1), (0,1) y (1.0). A la derecha se muestra un triángulo B similar, orientado de manera diferente. Las coordenadas son (0,0), (1, -1) y (1.1). Si los conjuntos A y B son dos tripletas, se tiene:

A + B = {(1, 0), (2, 1), (2, −1), (0, 1), (1, 2), (1, 0), (0, −1), (1, 0), (1, −2)}

Si A y B son los triángulos rojos, se forma un hexágono, ilustrado en la parte inferior derecha.

En general, la suma de dos polígonos es todavía un polígono. Esta propiedad es verdadera para un poliedro de cualquier dimensión.

Uno puede notar la analogía entre la suma de Minkowski y la convolución. Figurativamente, se puede obtener la superficie de la suma de dos conjuntos A + B cubriendo B de pintura y haciendo recorrer a su centro la superficie A. Por esta razón, la suma de Minkowski es a veces llamada convolución de A y B.

Evidentemente, la suma de un conjunto A y un singleton {b} corresponde a la traslación de A por el vector b.

Tres cuadrados se muestran en el cuadrante no negativo del plano cartesiano. El cuadrado Q1=[0, 1]×[0, 1] es verde. El cuadrado Q2=[1, 2]×[1, 2] es café, y se encuentra dentro del cuadrado de color turquesaQ1+Q2=[1, 3]×[1, 3].
La suma de Minkowski de conjuntos. La suma de de los cuadrados Q1=[0, 1]2Q2=[1, 2]2 es el cuadrado Q1+Q2=[1, 3]2.

Es algo más complejo darse cuenta de que la suma de dos cuadrados es de nuevo un cuadrado. En general, si C es un conjunto convexo, simétrico con respecto al origen, la suma C + C es igual al convexo 2C, aquí 2C significa la homotecia de razón 2. La prueba es algo más sutil, es análoga al lema preliminar usado en la prueba del teorema de Minkowski. Para realizar esto, se puede observar que cada elemento de 2C es un elemento de C + C, recíprocamente sea u + v un elemento de C + C, se escribe también como el doble de 1/2(u + v), o este elemento es en C.

Podemos citar un último ejemplo, que se encuentra en théorème isopérimétrique (Wikipedia en francés). Sean C un compacto convexo de un plano euclidiano y P un polígono convexo cuyos vértices están todos en la frontera de C y cuya arista más grande es de una longitud limitada (mayorada) por ε. Entonces, la suma de P y del disco con centro el vector nulo y radio ε contiene el compacto convexo C. Esta propiedad es un paso para establecer que no hay superficie más grande que el disco de mismo perímetro.

Véase también

Enlaces externos

Referencias

  • Dacorogna, Bernard (2004). Imperial College Press. ed (en inglés). Introduction to the Calculus of Variations. Londres. ISBN 1-86094-508-2. 

Wikimedia foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Mira otros diccionarios:

  • Teorema de Fermat sobre la suma de dos cuadrados — Pierre de Fermat. En teoría de números, el teorema de Fermat sobre la suma de dos cuadrados establece la relación que hay entre los números primos representables como suma de dos cuadrados. En concreto, el teorema dice lo siguiente …   Wikipedia Español

  • Morfología matemática — Una forma (en azul) y su dilatación (en verde) y erosión (en amarillo) morfológica por un elemento estructurante con forma de diamante. La Morfología matemática es una teoría y técnica para el análisis y tratamiento de las estructuras geométricas …   Wikipedia Español

  • Teoría de la Relatividad — Saltar a navegación, búsqueda Con el nombre de Teoría de la Relatividad se engloban generalmente dos cuerpos de investigación en ciencias físicas, usualmente conectadas con las investigaciones del físico Albert Einstein: su Teoría de la… …   Wikipedia Español

  • Teoría de la relatividad — Dibujo artístico sobre la teoría de la relatividad La teoría de la relatividad incluye dos teorías (la de la relatividad especial y la de la relatividad general) formuladas por Albert Einstein a principios del siglo XX, que pretendían resolver la …   Wikipedia Español

  • Integración — La integral definida de una función representa el área limitada por la gráfica de la función, con signo positivo cuando la función toma valores positivos y negativo cuando toma valores negativos. Para otros usos de este término, véase Integración …   Wikipedia Español

  • Introducción matemática a la relatividad general — La teoría de la relatividad general es una teoría métrica de la gravitación que incorpora además una descripción básica de los sistemas de referencia totalmente generales. Matemáticamente la teoría de la relatividad describe los efectos del campo …   Wikipedia Español

  • Relatividad general — Algunas partes de este artículo pueden resultar complicadas, en ese caso se recomienda Introducción a la relatividad general Representación artística de la explosión de la supernova SN 2006gy, situada a 238 millones de años luz. De ser válido el… …   Wikipedia Español

  • Masa y energía en la relatividad especial — Los términos masa y energía se usan para varios conceptos distintos, lo cual puede llevar a confusión. En ciertos contextos, se usan indistintamente ya que, en relatividad, masa y energía son equivalentes. Sin embargo, aún en el uso relativista… …   Wikipedia Español

  • Espacio vectorial — Saltar a navegación, búsqueda Un espacio vectorial es un conjunto de objetos (llamados vectores) que pueden escalarse y sumarse. Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra… …   Wikipedia Español

  • Grupo de Lorentz — En física, el grupo de Lorentz es el grupo de todas las transformaciones de Lorentz del espacio de Minkowski, la composición clásica de todas los fenómenos físicos no gravitacionales. Es el grupo de isometría grande posible que deja invariante el …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”