C*-álgebra

C*-álgebra

Las C*-álgebras ]] y se utilizan en algunas formulaciones de la mecánica cuántica. Una C*-álgebra es un álgebra de Banach sobre el cuerpo de los números complejos, junto con una función *: AA llamada involución que tiene las propiedades siguientes:

  • (x + y)_{}^{*} = x_{}^{*} + y_{}^{*} para todo x, y en A
  • (\lambda x)_{}^{*} = \lambda_{}^{*} x_{}^{*} para cada λ en C y cada x en A; aquí, λ* significa la conjugación compleja de λ.
  • (xy)_{}^{*} = y_{}^{*}x_{}^{*} para todo x, y en 'A
  • (x_{}^{*})_{}^{*} = x para todo x en A
  • la C* identidad:
\|x x_{}^{*}\| = \|x\|_{}^{2} para todo x en A.

Las álgebras C* son también * álgebras.

Si se omite la última propiedad, hablamos de una teorema de Gelfand-Naimark, las C*-álgebras son (módulo un isomorfismo) exactamente aquellas álgebras de operadores acotados en los espacios de Hilbert que son cerradas en la topología de la norma y bajo tomar adjuntos, con la función de involución dada por el tomar adjunto.

Contenido

*-Homomorfismos e *-Isomorfismos

La función f: AB entre B*-álgebras A y B se llama un*-homomorfismo si

  • f(xy) = f(x)f(y) para x y y en A
  • f(x*) = f(x)* para x en A.

Tal función f es automáticamente continua. Si f es biyectiva, entonces su inversa es también un *-homorfismo y f se llama un *-isomorfismo y A y B se dicen *-isomorfos. En ese caso, A y B son para todos los propósitos prácticamente iguales; se diferencian solamente en la notación de sus elementos. La estructura de una C*-álgebra fuerza cualesquiera *-homomorfismos a ser contractivos; y un homomorfismo es inyectivo si y solamente si es isométrico.

Ejemplos de C*-álgebras

El álgebra de n-por-n matrices sobre C se convierte en una C*-álgebra si utilizamos la norma de la matriz ||.||2 que surge como la norma de operador de la norma euclidiana en Cn. La involución viene dada por la traspuesta conjugada. El ejemplo motivante de una C*-álgebra es el álgebra de los operadores lineales continuos definidos en un espacio de Hilbert complejo H; aquí x* denota el operador adjunto del operador x: HH. De hecho, cada C*-álgebra es *-isomorfa a una subálgebra cerrada de tal álgebra de operadores para un espacio de Hilbert H conveniente; éste es el contenido del teorema de Gelfand-Naimark.

Un ejemplo de una C*-álgebra conmutativa es el álgebra C(X) de todas las funciones continuas complejo-valoradas definidas en un compacto de Hausdorff X. Aquí la norma de una función es el supremo de su valor absoluto, y la operación estrella es la conjugación compleja. Cada C*-álgebra conmutativa con elemento unidad es *-isomorfa a una tal álgebra C(X) usando la representación de Gelfand.

Si uno parte de un espacio localmente compacto de Hausdorff X y considera las funciones continuas complejo-valoradas en X que se anulan en el infinito (definido en el artículo sobre la compacidad local), entonces éstas forman una C*-álgebra conmutativa C0(X); si X no es compacto, entonces C0(X) no tiene elemento unidad. Una vez más la representación de Gelfand demuestra que cada C*-álgebra conmutativa es *-isomorfa a una álgebra de la forma C0(X).

Álgebras de von Neumann

Las álgebras de von Neumann, conocidas como W* álgebras antes de los años 60, es una clase especial de C* álgebras. Se les requiere ser cerradas en una topología que es más débil que la topología de la norma. Su estudio es una rama en sí misma de las matemáticas, aparte de las C*-álgebras.

C*-álgebras y la teoría cuántica de campos

En teoría cuántica de campos, se describe típicamente un conjunto físico con una C*-álgebra A con elemento unidad; los elementos auto-adjuntos de A (elementos x con x* = x) se interpretan como observables, las cantidades medibles, del sistema. Un estado del sistema se define como una funcional positiva en A, una función C-lineal φ: AC con φ(u, u*) > 0 para todo uA, tal que φ(1) = 1. El valor esperado del observable x, si el sistema está en el estado φ, es entonces φ(x).

Véase también


Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?

Mira otros diccionarios:

  • Algebra tiles — Algebra tiles are known as mathematical manipulatives that allow students to better understand ways of algebraic thinking and the concepts of algebra. These tiles have proven to provide concrete models for elementary school, middle school, high …   Wikipedia

  • Algebra (Struktur) — Algebra über einem Körper berührt die Spezialgebiete Mathematik Abstrakte Algebra Lineare Algebra Kommutative Algebra ist Spezialfall von Algebraische Struktur Vektorraum …   Deutsch Wikipedia

  • Álgebra de Boole — (también llamada Retículas booleanas) en informática y matemática, es una estructura algebraica que esquematiza las operaciones lógicas Y, O , NO y Si (AND,OR,NOT,IF), así como el conjunto de operaciones unión, intersección y complemento. Se… …   Wikipedia Español

  • Algebra (disambiguation) — Algebra is a branch of mathematics.Algebra may also mean: * elementary algebra * abstract algebra * linear algebra * universal algebra * computer algebraIn addition, many mathematical objects are known as algebras. * In logic: ** Boolean algebra… …   Wikipedia

  • Algebra (Begriffsklärung) — Algebra bezeichnet in der Mathematik: Algebra, ein Teilgebiet der Mathematik mit den weiteren Teilgebieten Elementare Algebra Abstrakte Algebra Lineare Algebra Kommutative Algebra Universelle Algebra Computeralgebra Außerdem bezeichnet man mit… …   Deutsch Wikipedia

  • Algebra Blessett — Algebra (chanteuse) Algebra Nom Algebra Felicia Blessett Naissance 1976 à Atlanta, Géorgie (États Unis) Pays d’origine …   Wikipédia en Français

  • Álgebra de Baldor — Álgebra Portada del libro Álgebra, de Aurelio Baldor Autor Aurelio Baldor …   Wikipedia Español

  • algebră — ALGÉBRĂ s.f. 1. Teorie a operaţiilor privind numerele reale (pozitive ori negative) sau complexe şi rezolvarea ecuaţiilor prin substituirea prin litere a valorilor numerice şi a formulei generale de calcul numeric particular. ♦ Manual şcolar care …   Dicționar Român

  • Algebra (chanteuse) — Algebra Nom Algebra Felicia Blessett Naissance 1976 à Atlanta, Géorgie (États Unis) Pays d’origine Etats Unis Activ …   Wikipédia en Français

  • Algebra — (fra Arabisk al djebr ) er en gren af matematikken der kan beskrives som en genralisering og udvidelse af aritmetikken. Man kan lave en grov inddeling af algebra i disse felter: 10 Elementær algebra hvor man ser på egenskaberne ved de reelle tal …   Danske encyklopædi

  • Algebra — Sf Lehre von den mathematischen Gleichungen (usw.) erw. fach. (15. Jh.) Entlehnung. Entlehnt aus ml. algebra, das seinerseits auf arab. al ǧabr zurückgeht. Dieses ist Teil des Titels eines Lehrbuchs des arabischen Mathematikers Al Ḫwārizmī (9. Jh …   Etymologisches Wörterbuch der deutschen sprache

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”