Espiral logarítmica

Espiral logarítmica

Espiral logarítmica

Una espiral logarítmica, espiral equiangular o espiral de crecimiento es una clase de curva espiral que aparece frecuentemente en la naturaleza. Su nombre proviene de la expresión de una de sus ecuaciones:  \theta = \log_{b} (r/a) \,

Espiral logarítmica (grado 10°).

Contenido

Historia

El término espiral logarítmica se debe a Pierre Varignon. La espiral logarítmica fue estudiado por Descartes y Torricelli, pero la persona que le dedicó un libro fue Jakob Bernoulli, que la llamó Spira mirabilis «la espiral maravillosa». Impresionado por sus propiedades, pidió que grabaran en su tumba, en Basilea, la espiral logarítmica con la máxima eadem mutata resurgo, pero, en su lugar, se grabó una espiral de Arquímedes. D'Arcy Thompson le dedicó un capítulo de su tratado On Growth and Form (1917).

Ecuaciones

En coordenadas polares (r, θ) la fórmula de la curva puede escribirse como

r = a b^\theta \,

o bien

 \theta = \log_{b} (r/a) \, , de aquí el nombre "logarítmica"

y en forma paramétrica como

x(\theta) = a b^\theta \cos(\theta)\,
y(\theta) = a b^\theta \sin(\theta)\,

con números reales positivos a y b. a es un factor de escala que determina el tamaño de la espiral, mientras b controla cuan fuerte y en que dirección está enrollada. Para b >1 la espiral se expande con un incremento θ, y para b <1 se contrae.

En geometría diferencial, la espiral puede definirse como una curva c(t) con un ángulo constante α entre el radio y el vector tangente

\arccos \frac{\langle \mathbf{c}(t), \mathbf{c}'(t) \rangle}{\|\mathbf{c}(t)\|\|\mathbf{c}'(t)\|} = \alpha
Espiral construida utilizando rectángulos con la proporción áurea. Resulta una aproximación a la espiral logarítmica.

Si α = 0 la espiral logarítmica degenera en una línea recta.

Si α = ± π / 2 la espiral logarítmica degenera en una circunferencia.

Características

Cualquier línea recta al origen cortará a la espiral logarítmica con el mismo ángulo α, que puede calcularse (en radianes) como arctan(1/ln(b)). El grado de la espiral es el ángulo (constante) que la espiral posee con circunferencias centradas en el origen. Puede calcularse como arctan(ln(b)). Una espiral logarítmica de grado 0 (b = 1) es una circunferencia; el caso límite es una espiral logarítmica de grado 90 (b = 0 o b = ∞) es una línea recta desde el origen.

Comenzando en un punto P y moviéndose hacia dentro, a lo largo de la espiral, hay que rodear el origen infinitas veces antes de alcanzarlo; sin embargo, la distancia total de este camino es finita. El primero en darse cuenta de esto fue Torricelli incluso antes de que se ideara el cálculo infinitesimal. La distancia total es r/cos(α), donde r es la distancia en línea recta desde P al origen.

Se pueden construir espirales logarítmicas de grado 17,03239 utilizando la sucesión de Fibonacci o la proporción áurea.

La espiral logarítmica se distingue de la espiral de Arquímedes por el hecho de que las distancias entre su brazos se incrementan en progresión geométrica, mientras que en una espiral de Arquímedes estas distancias son constantes.

Espirales logarítmicas en la naturaleza

Una borrasca sobre Islandia. El patrón que sigue se aproxima a la forma de una espiral logarítmica.
Corte de la concha de un nautilus donde se aprecian las cámaras formando aproximadamente una espiral logarítmica.

Los brazos de las galaxias espirales son aproximadamente espirales logarítmicas. Nuestra propia galaxia, la Vía Láctea, se cree que tiene cuatro brazos espirales mayores, cada uno de los cuales es una espiral logarítmica de unos 12 grados.

Los brazos de los ciclones tropicales, como los huracanes, también forman espirales logarítmicas.

En biología son frecuentes las estructuras aproximadamente iguales a la espiral logarítmica. Por ejemplo, las telas de araña y las conchas de molusco. La razón es la siguiente: comienza con una figura irregular F0. Se aumenta F0 en un cierto factor para obtener F1, y se pone F1 junto a F0, de forma que se toquen dos lados. Se aumenta F1 en el mismo factor para obtener F2, y se poner junto a F1, como antes. Repitiendo este proceso se genera aproximadamente una espiral logarítmica cuyo grado está determinado por el factor de expansión y el ángulo con que las figuras son puestas una al lado de otra.

El halcón se aproxima a su presa según una espiral logarítmica: su mejor visión está en ángulo con su dirección de vuelo; este ángulo es el mismo que el grado de la espiral.

Los insectos se aproximan a la luz según una espiral logarítmica porque acostumbran a volar con un ángulo constante a la fuente luminosa. Normalmente el Sol es la única fuente de luz y volar de esta forma consiste prácticamente en seguir una línea recta.

En geotecnia, la superficie de falla es el lugar geométrico de los puntos en donde el suelo ¨se rompe¨ y permite un deslizamiento, al estar sometido a cargas mayores a la que puede soportar. Estas superficies de falla en muchos casos son iguales o aproximables a una espiral logarítmica.

Véase también

Enlaces externos

Commons

Obtenido de "Espiral logar%C3%ADtmica"

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Espiral logarítmica — Una espiral logarítmica, espiral equiangular o espiral de crecimiento es una clase de curva espiral que aparece frecuentemente en la naturaleza. Fue descrita por primera vez por Descartes y posteriormente investigada por Jakob Bernoulli, quien la …   Enciclopedia Universal

  • Espiral de Arquímedes — Saltar a navegación, búsqueda La espiral de Arquímedes (también espiral aritmética), obtuvo su nombre del matemático siciliano Arquímedes, quien vivió en el siglo III antes de Cristo. Se define como el lugar geométrico de un punto moviéndose a… …   Wikipedia Español

  • Espiral hiperbólica — Saltar a navegación, búsqueda Una espiral hiperbólica es una Curva Plana trascendental, también conocida como espiral recíproca. Se define por la ecuación polar rθ = a, y es la inversa de la Espiral de Arquímedes. Espiral hiperbólica para a=2… …   Wikipedia Español

  • Espiral — Para otros usos de este término, véase Espiral (desambiguación). Coclear redirige aquí. Para otros usos, ver Cóclea. Una espiral logarítmica. Una espiral es una línea curva generada por un punto que se va alejando progresivamente del centro a la… …   Wikipedia Español

  • Jakob Bernoulli — Jakob Bernoulli. Nacimiento 27 de diciembre de 1654 …   Wikipedia Español

  • Colegio de Patafísica — El Colegio de Patafísica se crea el 11 de mayo de 1948 (22 Palotin del 76, según el calendario patafísico) en París, como irónica contraposición a las academias de arte y ciencias (Collége de France). Fue instaurado en conmemoración a los 50 años …   Wikipedia Español

  • Cinco — Este artículo trata sobre el número 5. Para otros usos de este término, véase Cinco (desambiguación). 5 Cardinal Cinco Ordinal Quinto, a Factorización …   Wikipedia Español

  • Número áureo — Para el número de astronomía, ver Número áureo (astronomía) El número áureo o de oro (también llamado número plateado, razón extrema y media,[1] razón áurea, razón dorada, media áurea, proporción áurea y divina proporción) representado por la… …   Wikipedia Español

  • Geometría de las conchas de moluscos — Una espiral logarítmica. En matemáticas, una superficie de concha de mar es una superficie hecha por un círculo que sube en espirales del eje z, mientras que disminuye su propio radio y la distancia desde el eje z. No obstante en la naturaleza no …   Wikipedia Español

  • Coordenadas polares — Localización de un punto en coordenadas polares. El sistema de coordenadas polares es un sistema de coordenadas bidimensional en …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”