Amoníaco anhidro

Amoníaco anhidro

Amoníaco anhidro

El amoniaco anhidro, es el amoniaco puro, sin agua. Se le añade anhidro para distinguirlo de otros productos a los que se les denomina impropiamente amoniaco.

A las soluciones amoniacales, soluciones de amoniaco en agua, se les llama, comúnmente, amoniaco en vez de agua amoniacal o hidróxido amónico.

Al sulfato amónico, sal amoniacal sólida y cristalina, se llama, en medios agrícolas, "amoniaco", posiblemente porque fue el primer abono amoniacal que se empleó masivamente.

Contenido

Propiedades del amoniaco

Nombre químico: Amoniaco.

Nombre común: Amoniaco anhidro.

Fórmula: NH3.

Peso molecular: 17,03.

Calidad comercial: 99,5 por 100 de NH3.

Calidad para refrigeración: 99,95 por 100 de NH3.

Límites de explosividad como gas (porcentaje en volumen en aire) LEL/HEL. - 16/25

Temperatura de autoignición como gas. 651 ºC (1.204 ºF).

Punto de fusión. -77,75 ºC

Punto de ebullición. -33,35 ºC

Densidad (kg/l a 15,6 ºC). 0,617

Densidad (kg/l a -33,35 ºC y 1 Atm). 0,6819

Densidad del gas (aire=1). 0,597 (0 ºC y 1 Atm)

Presión de vapor absoluta. 4,4 bar a 0 ºC; 8,7 bar a 20 ºC; 20,7 bar a 50 ºC.

Calor de vaporización. 327 kcal/kg

Olor. Pungente característico

Color. Incoloro

Sensibilidad a la luz. No

Afinidad por el agua. Sí.

Corrosividad: Corrosivo para el cobre, cinc y sus aleaciones y superficies galvanizadas.


El amoniaco en el campo

Historia

El francés Mazé, en 1896, hizo la primera experiencia para demostrar la posibilidad de las plantas de valerse del nitrógeno amoniacal para su nutrición. Pero no tuvo aplicación práctica porque la utilización de un gas licuado bajo presión, era, en aquel momento, imposible. En 1930 las investigaciones fueron reanudadas en los Estados Unidos por LEAWITT.

Con un arado tirado por mulas y un pequeño depósito de amoníaco comenzó, en 1930, una nueva era en el modo de alimentar a las plantas. Con esta experiencia en el delta del Mississippi comienza el abonado del suelo con gran cantidad de nitrógeno. Al fin de la segunda guerra mundial, la necesidad de buscar nuevos mercados para el amoniaco al haber disminuido la demanda para usos bélicos, hizo que las industrias se dirigieran hacia el campo, comenzando el crecimiento de la aplicación directa del amoniaco anhidro como abono nitrogenado. El Dr. W.B.Andrews y su equipo en la Universidad del Estado de Mississippi montaron las bases para el crecimiento del uso agrícola del amoniaco. Hubo que solucionar los problemas de los depósitos del gas, idear las herramientas necesarias para su inyección en el suelo agrícola y vencer las dificultades de su manejo.

Se llegó así en poco tiempo al uso agrícola en gran escala del amoniaco anhidro, con tan buenos resultados que en pocos años llegó a ser de uso ordinario en Estados Unidos.

Conteniendo el 82 % de nitrógeno en forma totalmente amoniacal, el amoniaco anhidro (sin agua), llamado muchas veces amoniaco agrícola o amoniaco líquido es el abono más concentrado y el único que se aplica en forma de gas.

Abonado con amoniaco anhidro

Cisternas de amoníaco en Rjukanbanen, Noruega.

En líneas generales el amoniaco anhidro llega a los centros de distribución mediante cisternas ferroviarias o de camión. Estos centros representan los puntos de partida del amoniaco para su utilización agrícola.

Desde estos centros se suministra a los depósitos nodriza fijos o móviles situados en las fincas y desde estos se reposta a las abonadoras que llamamos aplicadores. Estos aplicadores inyectan el amoniaco agrícola en el suelo donde gasifica totalmente difundiéndose de una a otra parte de la zona de inyección.


Se componen fundamentalmente de las partes siguientes:

  • Un tanque de acero, para contener el amoniaco.
  • Un dispositivo que regula la cantidad de amoniaco que sale del depósito.
  • Un divisor de flujo que distribuye equitativamente el amoniaco entre los inyectores.
  • Una serie de inyectores que depositan el amoniaco dentro del terreno.

También se han montado aplicadores de amoniaco en los arados de forma que se simultanea la operación con una operación de laboreo del terreno con el consiguiente beneficio económico.

El depósito lleva como accesorios: un conjunto de tuberías para efectuar las operaciones de carga y descarga, una válvula de seguridad que entra en funcionamiento en el caso de que la presión del amoniaco en el interior del tanque supere por cualquier motivo la presión de trabajo, un indicador de nivel que permite apreciar en todo momento la cantidad de amoniaco que hay en el depósito y también otro indicador de nivel, llamado "punto alto" que señala el límite de llenado que no debe superarse.

Normalmente el amoniaco agrícola se inyecta en el suelo a una profundidad variable (10/25 cm.), según la naturaleza y estructura del terreno en el momento de la aplicación.

La aplicación será mucho mejor en suelos bien labrados que cerrarán mejor y contendrán espacios de aire suficientes para que el amoniaco se difunda y se una a la arcilla y a la materia orgánica.

La distancia entre los dientes inyectores depende de: la cantidad de amoniaco, del cultivo y de la época de la aplicación del abono. En el caso de la inyección efectuada en presiembra para un cereal de primavera-verano, (por ejemplo el maíz) puede oscilar alrededor de los 50 cm.

En el caso de cultivos del tipo de remolacha, patata y maíz, se puede también recurrir a la inyección del amoniaco durante el curso de la vegetación de la planta, haciendo pasar un diente inyector entre cada línea y naturalmente habrá que adaptar el espacio entre los dientes inyectores a la de las líneas de siembra.

Cuando abonar con amoniaco anhidro

Si la temperatura del suelo está entre 4°C y 10°C o menos, el nitrógeno permanece en forma de ión amonio (NH4+). Así pegado a la arcilla y a la materia orgánica no puede ser arrastrado para abajo por el agua ni evaporado por arriba. Cuando las temperaturas del suelo pasan de las indicadas ciertos grupos de bacterias convierten el N amoniacal en nitritos (NO2-) y después en nitratos (NO3-) que es la forma más usada por las plantas para alimentarse, aunque algunas plantas pueden usar una cantidad considerable de nitrógeno en forma amoniacal.

El amoniaco anhidro permite abonar con una única aplicación de nitrógeno para todo el ciclo de vida de la planta. Esta única aplicación permite una mejor nutrición del cultivo ya que la nitrificación al igual que el desarrollo de la planta van ligadas a la temperatura con lo que la planta tiene la dosis de nitrógeno nítrico que necesita en cada momento y el nitrógeno no se pierde por las lluvias o el riego.

Hay tres épocas diferenciadas de aplicar el amoniaco: en presiembra en otoño, en presiembra en primavera y en postsiembra inyectando entre líneas de cultivo. También se está aplicando en un solo pase al sembrar, sobre todo en la siembra directa.

  • Aplicación otoñal. La aplicación otoñal debe practicarse en las zonas en que las temperaturas medias del suelo en invierno sean inferiores a 10°C. A esta temperatura la nitrificación es muy baja y es nula a 0°C. Puede aplicarse en otoño no sólo para las siembras otoñales sino incluso para las siembras de primavera. Por las bajas temperaturas es muy corriente en el norte del Oeste americano y en el Medio Oeste por las pocas lluvias. Puede hacerse una aplicación otoñal en suelos con muchos residuos de cosechas porque una gran parte de lo que nitrifique será aprovechado por los microorganismos del suelo para destruir estos residuos. Así se reducirán las pérdidas por lixiviación pero la eficiencia de este nitrógeno en el año siguiente puede ser menor, ya que dependerá del momento en que se restituya al suelo. La aplicación otoñal puede tener la ventaja de hacerla en un momento de menos trabajo y en los que la tierra suele estar en buena sazón. Ha dado los mejores resultados en los años secos.
  • Aplicación en primavera. La aplicación en primavera es la más empleada a pesar de ser el momento de más trabajo, por los buenos resultados conseguidos y también porque la dosificación ya se puede hacer sabiendo con seguridad el cultivo que se va a implantar.

Aplicación del amoniaco anhidro y siembra en un solo pase. Hay varios tipos de sembradoras de siembra directa con aplicación de amoniaco anhidro simultáneamente. En ningún caso la distancia entre el punto de inyección y la semilla es mayor de 5 cm.

Aplicación entre las líneas de cultivo

La aplicación entre líneas es una buena forma de aplicar el amoniaco porque:

(1) Según el estado del cultivo se puede calcular la cantidad a aplicar.

(2) Pueden haberse controlado las malas hierbas y así no se las abona.

(3) Hay un período largo de aplicación (En maíz desde el momento de la siembra hasta que tiene 60 70 cm. de altura).

(4) Se evita el problema del poco tiempo entre el laboreo y las siembras tempranas.

En estas aplicaciones "entre líneas" se ha encontrado muchas veces una mayor rapidez de asimilación del nitrógeno comparándola con la del nitrato granulado. Puede ser que la mayor rapidez de la planta en valerse del nitrógeno amoniacal respecto al nítrico, en contra de todo lo que se ha dicho, sea debido a que el amoniaco,inyectado en profundidad, sea mejor utilizado por la planta que los nitratos granulados distribuidos en superficie. Dicho de otro modo una forma de nitrógeno tenida como de acción más lenta, como la amoniacal, puede ser más rápida que un nitrato distribuido en cobertera en razón de su mayor difusión al nivel de las raíces. A este respecto se puede añadir que el amoniaco representa el medio para obtener un buen reparto del nitrógeno en el terreno, garantizando también, del mejor modo, la nutrición de la planta aun cuando la humedad del terreno comience a faltar.

Fijación y transformación en el suelo

Al salir del diente inyector el amoniaco se expande gasificándose y varios procesos químicos comienzan tan pronto se inyecta el amoniaco en el suelo. Uno de ellos es la conversión del amoniaco gas en ion amonio (NH4+) cuando el amoniaco se pone en contacto con el agua, partículas de arcilla y componentes orgánicos del suelo. En el proceso de conversión de NH3 en NH4+, la molécula del amoniaco acepta un ion hidrógeno (H+) de una fuente del suelo y se transforma en ion amonio.

La formación de ion amonio convierte el gas amoniaco que es tóxico para la materia viva en una forma que puede ser usada por los microorganismos y las plantas superiores. Las moléculas de amoniaco o el ion amonio formado por el amoniaco con agua, arcilla o materia orgánica son atraídas por las partículas minerales de suelo inmediatamente después de la inyección del amoniaco. El amoníaco puede ser absorbido en suelos por los minerales o por los coloides del suelo por varias reacciones sumamente importantes, desde el punto de vista del uso de los fertilizantes, por dos razones:

1ª. La absorción previene las pérdidas de amoniaco hacia la atmósfera y lo conserva en el suelo para el uso por los microbios y las plantas;

2ª. Alguno de estos mecanismos de absorción convierten directamente el amoniaco anhidro en forma de amonio.

Los mecanismos de absorción del amoniaco desde reacciones químicas fijan el amoniaco muy fuertemente. La unión producida en la absorción química es de naturaleza eléctrica ya que las superficies de las partículas de arcilla están cubiertas con cargas negativas. El ion se sujeta a esta superficie,por su carga positiva. El amoniaco o más correctamente los iones amonio (NH4+), sujetos, se consideran como comprendidos en la provisión de nitrógeno disponible en el suelo.

En terrenos con pH ácido el ion amonio se fija sobre todo en los materiales arcillosos. Lo mismo ocurre en terrenos alcalinos aunque en este caso la fijación sobre la materia orgánica asume una notable importancia.

En los terrenos ricos en cal el fertilizante se fija mediante una relación de cambio con los iones Ca que en el momento de la inyección se encuentra sobre el complejo absorbente.

Una vez inyectado y sobre todo cuando el amoniaco queda fijado no hay ningún riesgo de pérdida ni por la lluvia ni por la pura y simple evaporación. En el caso de los abonos que se dejan sobre el suelo las pérdidas por evaporación del nitrógeno amoniacal son siempre mayores en cualquier otro que en el amoniaco anhidro porque el enterramiento de este es instantáneo.

El proceso metabólico en la planta para formar aminoácidos y proteínas necesita que el nitrógeno se trasforme a forma amónica o amina (NH2-) para poderlo utilizar. El nitrato se reduce así: el nitrato (NO3-) pasa a nitrito (NO2-) que pasa amonio (NH4-)y de ahí a amina (NH2-). Por este motivo, antes de transformarse en nitrato, las plantas superiores han tomado ya parte como ion amonio. Algunas plantas, y sobre todo las plantas jóvenes prefieren el nitrógeno amoniacal en vez del nítrico, debido, en parte, al hecho de que las plantas más jóvenes no poseen el sistema enzimático necesario para convertir el nitrógeno nítrico en amoniacal.

Los procesos de oxidación incluyen la conversión del ion amonio en nitrógeno nítrico lo que se llama nitrificación. La nitrificación comienza en la periferia de la zona de retención del amoniaco y va hacia el centro. En el proceso de nitrificación intervienen dos grupos de microorganismos del suelo: las nitrosomonas y las nitrobacterias.

Normalmente la oxidación de nitrito a nitrato por las nitrobacterias es inmediata a la del amoniaco a nitrito por las nitrosomonas; por esto raramente persiste alguna cantidad de nitritos en el suelo. La nitrificación es máxima cuando la humedad del suelo está entre un medio y dos tercios de la humedad máxima. Las temperaturas óptimas para la nitrificación están comprendidas entre 18°C a 32°C. La actividad de los microorganismos decrece rápidamente con temperaturas mayores de 32°C o menores de 16°C y cesa completamente a 0°C. Cuando las temperaturas del suelo son bajas, como en el fin del otoño o durante el invierno la nitrificación es muy pequeña. También es muy baja la nitrificación cuando se entierran muchos de residuos de cosechas, debido a la gran demanda de nitrógeno por parte de las bacterias para descomponerlos.

Una vez transformado de amoniaco a nitrato el nitrógeno no se une eléctricamente a la arcilla. En forma nítrica puede moverse en el suelo por capilaridad o por los movimientos descendentes o ascendentes del agua de riego.

El nitrógeno nitroso o el nítrico pueden perderse en la atmósfera cuando los microbios, para tomar el oxígeno que necesitan, reducen nitritos y nitratos a gases como óxido nitroso o nitrógeno elemental por haber poco oxígeno. Esta es la causa más corriente de la falta de nitrógeno en los suelos encharcados.

El tiempo de transformación de nitrógeno amoniacal en nítrico en el terreno oscila entre las ocho y las doce semanas a una temperatura de 15°C. Por esto abonando con amoniaco anhidro en presiembra en primavera la planta tiene disponible durante 50 a 80 días preferentemente nitrógeno amoniacal. También en el suelo hay nitrógeno nítrico procedente de la transformación. Pasado este periodo en el terreno está presente esencialmente el nitrógeno nítrico procedente de la transformación amoniacal. La planta acaba así su ciclo siempre en condiciones óptimas de nutrición.

Acción del amoniaco sobre la estructura del terreno

Debido a la interacción del amoníaco con ciertas fracciones de la materia orgánica el amoniaco anhidro influye notablemente sobre la estabilización general de los agregados del suelo. Es evidente también el buen efecto de este abono sobre la descomposición de los residuos vegetales en la tierra, en relación con la posibilidad de constituir enlaces químicos entre el amoniaco y ciertas porciones de la materia orgánica no totalmente evolucionada.

A largo plazo se manifiesta también una acción favorable sobre la evolución de la relación C/N que contribuye a mejorar sensiblemente la estructura de los terrenos, favoreciendo la formación de humus estable a partir de los residuos vegetales, pobres en nitrógeno, enterrados (paja de gramíneas, restos de cosechas etc.

Tratamiento de subproductos agrícolas

Antecedentes

La paja de cereales, los cañotes de maiz, otros subproductos agrarios y la mayoría de los forrajes secos están constituidos por restos de paredes celulares que contienen celulosa, lignina, hemicelulosas y pectina, compuestos todos difíciles de degradar y, por tanto, de aprovechar. Al tratarlos con un agente cáustico, se rompen las uniones hemicelulosa-lignina solubilizando la hemicelulosa. También se rompe la estructura de la celulosa al cortar los enlaces hidrogenados. Se hincha la fibra dando a la celulasa (la enzima responsable de la digestión de la celulosa) mejor acceso a las fibras que se hacen más asimilables. Cualquier subproducto agrícola de bajo valor nutritivo es un buen candidato para la amonización. Se dice que es de poco valor nutritivo cuando contiene alrededor del 6 % de proteína y 1 Mcal/Kg. de energía neta lechera.

Uno de los primeros métodos ideados fue el tratamiento con sosa cáustica, que se usó en Alemania durante las dos guerras mundiales. Su aplicación no es fácil ni segura por lo que apenas se ha usado en las granjas.

En Noruega, se investigó sobre el uso del amoniaco para sustituir al tratamiento con sosa. Es el llamado método noruego o de Sunstold. Los resultados fueron espectaculares y la técnica muy sencilla. La amonización es un método muy sencillo de tratamiento de subproductos agrícolas que aumenta considerablemente el valor nutritivo y el consumo de los subproductos, que los rumiantes pueden aprovechar. El tratamiento consiste en inyectar amoníaco dentro de una pila cubierta con una lámina de plástico o en un túnel de tratamiento.

La paja de cereales es el subproducto más importante de que disponemos pero, a pesar de que por su composición química tiene una alto potencial energético, tiene poco valor nutritivo por lo poco apetecible que es para el ganado y por su baja digestibilidad. La amonización transforma la paja que toma color de caramelo y se hace más suave. Una vez tratada, la paja puede darse al ganado sin cuidado ya que estará seca y sin ninguna sustancia extraña.

Ventajas de la amonización

  • Mayor contenido en energía.

Como consecuencia de la mayor digestibilidad el contenido en energía de la paja tratada aumenta considerablemente. El valor energético de una paja tratada puede alcanzar las 0.60 U.A.

  • Mayor contenido en Materias Nitrogenadas Totales.

El tratamiento, fija en la paja una parte del nitrógeno que es aprovechado por el ganado como nitrógeno no proteico (NNP). El contenido en materia nitrogenada total (MNT) alcanza el 9 % con facilidad.

  • La mejor distribución del NNP.

El tratamiento con amoniaco aventaja a cualquier otra fuente de NNP por la uniformidad de la distribución ya que el gas se difunde por toda la paja. El amoniaco no fijado se escapa al abrir la pila, así, al contrario de lo que ocurre con otros métodos, no queda ningún álcali residual.

  • Incremento del consumo.

El ganado come mejor la paja tratada que la sin tratar. Por su mayor digestibilidad pasa más rápidamente por el tracto digestivo, aumentando la capacidad de ingestión. Consecuentemente aumenta el consumo.

  • Disminución del coste de la alimentación.

Al aumentar la digestibilidad, el contenido nitrogenado y el consumo de un alimento barato, hay que emplear menos alimentos concentrados, para equilibrar la ración, con el consiguiente beneficio económico.

  • Mejora la asimilación de los nutrientes.

Las raciones en las que entra la paja, tienen siempre un alto contenido en fibra, lo que favorece la fermentación en el rumen. Además el amoniaco tiende, generalmente, a solubilizar la proteína del alimento al que se añade.

  • Conservación de los productos tratados.

La paja tratada se conserva bien para el año siguiente. El amoniaco en dosis del 1.5 al 2.00 % sobre MS, es un buen fungicida. Protege bien a los subproductos con un contenido de humedad de hasta el 30 %.

  • Se revaloriza un forraje pobre. Se puede aumentar el rebaño sin aumentar la superficie dedicada a forrajes o disminuir el cultivo de forrajes para dedicar estas superficies a otros cultivos. Se prepara un stock de seguridad para un otoño o invierno demasiado secos o largos, y ante una emergencia se puede reservar el mejor forraje para el ganado de más alta producción.

Métodos de tratamiento.

Se pueden utilizar hornos en los que se trata de forma automatizada la cantidad necesaria para uno o varios días. Sin embargo, por su elevado coste, la adquisición del horno necesita una buena planificación y tener garantizado el suministro continuo de amoniaco y paja u otro subproducto barato.

Lo más sencillo es amonizar las pilas de pacas. No hay que mover la paja y no se necesita ninguna inversión. Pueden tratarse pacas de cualquier tipo y tamaño en pilas de cualquier tipo y tamaño. Envueltas en plástico las rotopacas se tratan como una pila.

  • Tratamiento en pilas.

Puede tratarse en cualquier época del año. Siempre previniendo que, salvo en verano, se van a pasar dos meses desde la aplicación hasta que la paja se pueda dar al ganado. En el caso de tratamiento de otros subproductos, con mucha humedad, la amonización debe hacerse inmediatamente de recogidos para evitar el calentamiento o el enmohecimiento.

La duración del tratamiento depende de la temperatura exterior. Será de más de ocho semanas con temperaturas inferiores a menos de 5°C, hasta menos de una semana con temperaturas de más de 30°C. El tratamiento es más eficaz cuando la paja está ligeramente húmeda. Es aconsejable empacarla por la mañana o en días con humedad en el ambiente. Debería de contener un mínimo de 10 % de humedad y el nivel óptimo está entre el 15 al 18 %. No conviene mojar las pacas al hacer la pila porque el amoniaco se reparte con menos uniformidad. Cualquier lugar al aire libre es bueno, lo más llano posible y con buen drenaje. Es preferible planificar la pila previamente porque cuanto mayor es la pila y mayor la densidad de las pacas, se necesita menos plástico por Tm de paja y es más económico el tratamiento.

  • Inyección del amoniaco.

Se inyecta del 3 al 3.5 % de amoniaco por Kg. de materia seca. El amoniaco es una materia peligrosa y su manejo y el de los aparatos necesarios debe hacerlo un profesional. El suministrador del amoniaco deberá encargarse de hacer la aplicación. Después de hecha la aplicación no hay ningún riesgo en manejar la paja.

  • Ciclo del amoniaco dentro de la pila.

El amoníaco (NH3) se transporta en forma líquida y así se inyecta en la pila. Al perder la presión gasifica. El frío producido al evaporarse congela en el exterior de la pila el final de la manguera y la lanza de inyección. Sin embargo dentro de la pila el proceso se invierte. El gas amoniaco al combinarse con la humedad de la paja produciendo hidróxido amónico (NH4OH) desprende una gran cantidad de calor. El agua contenida en la paja se evapora y combinado con el amoniaco circula dentro de las pacas condensándose en la parte superior al contacto con la lámina de plástico, enfriada por el ambiente. Esta agua escurre por las paredes de los plásticos dentro de la pila hasta formar un charco de agua amoniacal en el fondo. Esta agua amoniacal sigue desprendiendo amoniaco que vuelve a combinarse con la humedad y repite el ciclo. La paja tratada se hace más suave al tacto y toma un color caramelo que la hace distinguirse perfectamente de una paja sin tratar. Al abrir la pila el gas amoniaco sobrante se escapa a la atmósfera.

  • Apertura de la pila después del tratamiento.

Hay que abrir la pila y dejarla airear por lo menos 24 horas antes de ofrecerla a los animales. El gas amoniaco no fijado escapa y no produce molestias ni a personas ni a animales.

La paja de piso de la pila puede estar empapada en agua amoniacal, que se forma al reaccionar el amoniaco con la humedad de la paja. Hay que dejarla secar totalmente antes de dársela al ganado, para que escape a la atmósfera el amoniaco que pudiera contener en exceso.

Analizar la paja antes y después del tratamiento, haciendo constar en la muestra “paja tratada con amoniaco” y pidiendo como mínimo los datos Materia Seca y Materia Nitrogenada Total. Es un buen dato para hacer la ración.

  • Raciones.

Para obtener toda la eficacia de cualquier alimento es preciso equilibrar las dietas. La paja tratada no es diferente. La cantidad de nitrógeno presente en la paja tratada, después de aireada para eliminar el amoniaco no fijado, está en equilibrio con su valor nutritivo. Para utilizar eficientemente el nitrógeno no proteico (urea, biuret, amoniaco, etc.) se debe aportar una cantidad de proteína verdadera que ayude a algunas familias de bacterias y protozoos a establecer un buen equilibrio en el rumen. Una norma muy segura, es dar en forma de proteína verdadera, como mínimo, un tercio del contenido proteico total de la dieta. Es preferible que esta proteína verdadera sea de baja degradabilidad para que permaneciendo más tiempo en el rumen su utilidad sea lo más duradera posible. Es mejor suministrarla a la vez o después que la paja tratada y no antes. Es muy importante distribuirla a lo largo del día para que el N se libere cuando existen radicales energéticos (ácidos acético, propiónico y butírico) en la panza. Mejor aún es si se mezcla con otros componentes que lo equilibren, de forma que el ganado no lo pueda separar en el comedero. Un comedero de fondo plano (el simple suelo es el mejor si se evita el pisoteo) consigue que no se puedan separar fácilmente los componentes más densos.

Es muy importante aportar minerales que evitarán problemas de carencias. Son muy importantes el fósforo y el azufre. La paja apenas contiene fósforo que es indispensable para degradar la celulosa y forma parte de algunos tejidos bacterianos. El azufre es muy necesario también para que las bacterias ejerzan su función.

Obtenido de "Amon%C3%ADaco anhidro"

Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?

Mira otros diccionarios:

  • Amoníaco — Amoníaco …   Wikipedia Español

  • Anhidro — Saltar a navegación, búsqueda Como término general, se dice que una sustancia es anhidra si no contiene agua. La manera de obtener la forma anhidra difiere de una sustancia a otra. Contenido 1 Solventes 2 Cristales iónicos 3 Gases …   Wikipedia Español

  • Flúor — Saltar a navegación, búsqueda Flúor Oxígeno ← Flúor → Neón …   Wikipedia Español

  • Fertilizante — Fertilizando con nitrógeno un campo de maíz, en Estados Unidos. Fertilizante, tipo de sustancia o mezcla química, natural o sintética utilizada para enriquecer el suelo y favorecer el crecimiento vegetal. Las plantas no necesitan compuestos… …   Wikipedia Español

  • Tetróxido de dinitrógeno — Para otros usos de este término, véase Óxido de nitrógeno (IV) (desambiguación). Tetróxido de dinitrógeno Tetróxido de dinitrógeno …   Wikipedia Español

  • Metilamina — Metilamina …   Wikipedia Español

  • Enlace por puente de hidrógeno — Saltar a navegación, búsqueda Ejemplo de enlace de hidrógeno intermolecular en un complejo dimérico autoensamblado molecular reportado por Meijer y colaboradores …   Wikipedia Español

  • Fosforilación oxidativa — Esquema actual del sistema mitocondrial de la fosforilación oxidativa. Los equivalentes reducidos que se generan en el metabolismo (NADH, FADH2) son oxidados por la cadena de transporte de electrones. La energía libre generada en esta reacción se …   Wikipedia Español

  • Hidroxilamina — La hidroxilamina u oxiamoníaco de fórmula (NH2OH), es un cuerpo que procede de sustituir un átomo de Hidrógeno del amoníaco por un hidroxilo. No se encuentra libre en la naturaleza. Es un cuerpo sólido, incoloro, inodoro, muy ávido del agua y se… …   Wikipedia Español

  • Nitrato de calcio — También llamado Norgessalpeter (salitre noruego) es el compuesto inorgánico con la fórmula Ca (NO 3) 2. . Este color sal absorbe la humedad del aire y se encuentra comúnmente como tetrahidratado . Se utiliza principalmente como componente de… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”