- Mecanismo de Higgs
-
El mecanismo de Higgs, ideado por Peter Higgs entre otros, es uno de los mecanismos posibles para producir la ruptura espontánea de simetría electrodébil en una Teoría Gauge invariante. Permitió establecer, la unificación entre la teoría electromagnética y la teoría nuclear débil, que se denominó Teoría del campo unificado dando premio Nobel en año 1979[1] a Steven Weinberg, Sheldon Lee Glashow y Abdus Salam
Contenido
Historia y denominación
Este mecanismo también es conocido como mecanismo de Brout–Englert–Higgs, mecanismo de Higgs–Brout–Englert–Guralnik–Hagen–Kibble, o mecanismo de Anderson–Higgs. En 1964, fue inicialmente propuesto por Robert Brout y François Englert,[2] e independientemente por Peter Higgs[3] y por Gerald Guralnik, C. R. Hagen, y Tom Kibble.[4] Fue inspirado en la Teoría BCS de rompimiento de simetría en superconductividad basado en Teoría Ginzburg-Landau, los trabajos de la estructura del vacío de Yoichiro Nambu, y las ideas de Philip Anderson según las cuales la superconductividad podía ser relevante en la relatividad, el electromagnetismo y otros fenomenos clásicos. El nombre de mecanismo de Higgs fue dado por Gerardus 't Hooft en 1971. Los tres artículos originales de Guralnik, Hagen, Kibble, Higgs, Brout, y Englert en donde se propone este mecanismo fueron reconocidos como fundamentales en la celebración del aniversario 50 de la revista Physical Review Letters.[5]
Campos y partículas
La segunda mitad del siglo XX fue un tiempo de descubrimiento de nuevas partículas elementales, nuevas fuerzas y, sobre todo, nuevos campos. El espacio puede llenarse con una amplia variedad de influencias invisibles que tienen todo tipo de efectos sobre la materia ordinaria. De todos los nuevos campos que se descubrieron, el que tiene más que enseñarnos sobre el paisaje es el campo de Higgs. Existe una relación general entre partículas y campos. Por cada tipo de partícula de la naturaleza hay un campo y por cada tipo de campo hay una partícula. Así campos y partículas llevan el mismo nombre. El campo electromagnético podría denominarse campo de fotones. El electrón tiene un campo, también lo tienen el quark, el gluón y cada miembro del reparto de personajes del modelo Standard, incluida la partícula de Higgs.
El campo de Higgs
En la concepción del Modelo estándar de física de partículas, el boson de Higgs así como otros bosones (encontrados ya experimentalmente) y ligados en esta teoría, se interpretan desde el Bosón de Goldstone donde cada parte del rompimiento de simetría genera un campo, para el cual los elementos que viven en este campo son sus respectivos bosones. Existen teorías creadas a partir del miedo de la no existencia del boson de Higgs donde no es necesaria su aparición. El campo de Higgs es el ente matemático donde existe, su interpretación con la teoría es el producto de él con los otros campos que sale por el mecanismo de ruptura, este producto nos da el acople y la interacción de él, con esta interacción con los otros campos legamos la caracteristica de generador de masa.
Formulación matemática
Introducimos un campo adicional Φ que rompa la simetría SU(2)L × U(1)Y → U(1)em. Debido a las condiciones que se exigen a la teoría será un doblete (de SU(2)L) de campos escalares complejos (doblete de Higgs):
Dobletes de Higgs
El número total de entradas (número dimensional del vector) de Higgs no está determinado por la teoría y podría ser cualquiera. No obstante la versión mínima del SM posee uno solo de estos dobletes.
El sistema vendrá entonces descrito por un Lagrangiano de la forma:
tal que:
donde V(Φ) es el potencial renormalizable (y por tanto que mantiene la invarianza gauge) más sencillo. Para que se produzca ruptura espontánea de simetría es necesario que el valor esperado del campo de Higgs en el vacío sea no nulo. Para λ > 0, si μ2 < 0, el potencial posee infinitas soluciones no nulas (ver figura 1), en las cuales sólo la norma del campo de Higgs está definida:
Estado fundamental
El estado fundamental está, por consiguiente, degenerado y no respeta la simetría del grupo SU(2)L × U(1)Y. Sin embargo, sí conserva la simetría del grupo U(1)em. El valor de υ indica la escala de energía a la que se produce la ruptura de la simetría electrodébil. La ruptura SU(2)L × U(1)Y --> U(1)em se produce cuando se selecciona un estado del vacío concreto. La elección habitual es aquella que hace que φ3 sea no nulo:
Espectro de partículas
El espectro de partículas físicas resultantes se construye realizando pequeñas oscilaciones en torno al vacío, que pueden ser parametrizadas en la forma:
donde el vector y el escalar h(x) son campos pequeños correspondientes a los cuatro grados de libertad reales del campo . Los tres campos son los bosones de Goldstone, de masa nula, que aparecen cuando una simetría continua es rota por el estado fundamental (teorema de Goldstone).
En este punto aún tenemos 4 bosones gauge (Wiμ(x) y Bμ(x)) y 4 escalares ( y h(x)), todos ellos sin masa, lo que equivale a 12 grados de libertad (Conviene notar que un bosón vectorial de masa nula posee dos grados de libertad, mientras que un bosón vectorial masivo adquiere un nuevo grado de libertad debido a la posibilidad de tener polarización longitudinal: 12 = 4[bosones vectoriales sin masa] × 2 + 4[escalares sin masa]). P. W. Higgs fue el primero en darse cuenta de que el teorema de Goldstone no es aplicable a teorías gauge, o al menos puede ser soslayado mediante una conveniente selección de la representación. Así, basta con escoger una transformación:
de forma que:
con lo cual desaparecen los tres campos de Higgs no físicos . Debemos aplicar estas transformaciones sobre la suma de las Lagrangianas para bosones y fermiones:
Al final del proceso, tres de los cuatro bosones gauge adquieren masa al absorber cada uno de los tres grados de libertad eliminados del campo de Higgs, gracias a los acoplamientos entre los bosones gauge y el campo Φ presentes en la componente cinética de la Lagrangiana SBS:
Por otro lado, el vacío de la teoría debe ser eléctricamente neutro, razón por la que no existe ningún acoplamiento entre el fotón y el campo de Higgs, h(x), de forma que aquél mantiene una masa nula. Al final, obtenemos tres bosones gauge masivos (W±μ, Zµ), un bosón gauge sin masa (Aμ) y un escalar con masa (h), por lo que seguimos teniendo 12 grados de libertad (del mismo modo que antes: 12 = 3[bosones vectoriales masivos] × 3 + 1[bosón vectorial sin masa] × 2 + 1[escalar]). Los estados físicos de los bosones gauge se expresan entonces en función de los estados originales y del ángulo de mezcla electrodébil θW:
Ángulo de mezcla
El ángulo de mezcla θW, se define en función de las constantes de acoplamiento débil, g, y electromagnética, g´, según:
Las predicciones de las masas de los bosones a nivel de árbol son:
donde (e es la carga eléctrica del electrón):
Masa del bosón de Higgs
La masa del bosón de Higgs se expresa en función de λ y del valor de la escala de ruptura de simetría, υ, como:
La medida de la anchura parcial de la desintegración:
a bajas energías en el SM permite calcular la constante de Fermi, GF, con gran precisión. Y puesto que:
se obtiene un valor de υ = 246 GeV. No obstante el valor de λ es desconocido y por tanto la masa del bosón de Higgs en el SM es un parámetro libre de la teoría.
Bosones gauge y fermiones
Análogamente al caso de los bosones gauge, los fermiones adquieren masa mediante los denominados acoplamientos de Yukawa, que se introducen a través de una serie de nuevos términos en la Lagrangiana:
donde:
Del mismo modo que antes, se aplica la transformación sobre la parte levógira de los fermiones, mientras que la parte dextrógira no se transforma:
Y finalmente se obtienen las masas de los fermiones según:
Es conveniente hacer notar en este punto, que la determinación de la masa del bosón de Higgs, no explica directamente las masas fermiónicas ya que dependen de las nuevas constantes λe, λu, λd, ... Por otro lado, se deduce también el valor de los acoplamientos del bosón de Higgs con los distintos fermiones y bosones, los cuales son proporcionales a las constantes de acoplamiento gauge y a la masa de cada partícula.
Véase también
- Modelo electrodébil
- Teoría gauge
- Ruptura espontánea de simetría
Fuentes
Referencias
Bibliografía
Schumm, Bruce A. (2004) Deep Down Things. Johns Hopkins Univ. Press. Chpt. 9.
Categorías:- Física nuclear y de partículas
- Cosmología física
- Simetría
Wikimedia foundation. 2010.