- Número plateado
-
El número plateado o razón plateada es una constante matemática. Su nombre es una alusión a la razón áurea; análoga a la forma en que el número áureo es la proporción limitante de la sucesión de Fibonacci, el número plateado es la proporción limitante de la sucesión de Pell. El término número plateado a veces es confundido con el número plástico.
Contenido
Definición
La razón plateada (δS) es un número irracional definido por la suma de 1 y la raíz cuadrada de 2. Esto es:
Se sigue de esta definición que:
Fracción continua
En fracción continua, la razón plateada [2,2,2,...] se expresa:
Propiedades
No equidistribución mod 1
En las aproximaciones diofánticas, la secuencia de partes fraccionales de
- xn, n = 1, 2, 3, ...
Se puede ver que la equidistribución mod 1, para casi todos los números reales que x > 1. La razón plateda es una excepción.
Potencias de la razón plateada
Las potencias inferiores de la razón plateada son:
Las potencias continúan con el patrón
donde
Por ejemplo, empleando esta propiedad:
Empleando y como condición inicial, una fórmula tipo-Binet daría la solución en forma recurrente...
lo cual acaba siendo...
Expresiones plateadas
La expresión general se conoce con el nombre de expresión plateada. La razón dorada es una expresión plateada para n = 1, mientras que la razón plateada es para n = 2. Los valores de las diez primeras razones plateadas se muestran a la derecha.[1]
Expresiones plateadas 0 0 + √1 1 1 ½ + √1¼ 1.618033989 2 1 + √2 2.414213562 3 1½ + √3¼ 3.302775638 4 2 + √5 4.236067978 5 2½ + √7¼ 5.192582404 6 3 + √10 6.162277660 7 3½ + √13¼ 7.140054945 8 4 + √17 8.123105626 9 4½ + √21¼ 9.109772229 Propiedades de la razón plateada
Estas propiedades sólo son válidas para enteros m; para números no enteros las propiedades son similares, pero difieren ligeramente. Las propiedades mostradas más abajo para las potencias de la razón plateada son una consecuencia de las propiedades que muestran. Para la expresión de la razón plateada S de m, la propiedad puede generalizarse como
donde
Empleando las condiciones iniciales and , esta relación recurrente llega a ser ...
Las potencias de la razón plateada poseen otras propiedades interesantes:
- Si n es un número entero positivo y par:
Además,
- También,
La media de la razón plateada S de m también tiene la propiedad que:
lo cual significa que la media de la expresión plateada tiene la misma parte decimal que la correspondiente expresión plateada. Empleando esta propiedad, la expresión de la razón plateada definida para todos los números debe satisfacer:
Si expandimos la expresión de la razón dorada S de m tal que
donde a es la parte entera de S y b, entonces la siguiente propiedad es cierta:
Por ser (para todos los m mayores que 0), la parte entera de Sm = m, a=m. Para m>1, donde tenemos que
Por lo tanto, la expresión de la razón plateada de m es una solución de la ecuación
Es interesante resaltar que la expresión de la expresión S of −m es la inversa de la expresión S de m.
Otro resultado interesante se puede obtener mediante un ligero cambio en la fórmula de la expresión. Si consideramos un número
entonces las siguientes propiedades son ciertas:
- si c es real,
- si c es un múltiplo de i.
Rectángulos plateados
Un rectángulo cuya relación de aspecto entre los lados sea igual a la razón plateada se denomina rectángulo plateado, por analogía con la razón dorada. Confusamente, el “rectángulo de plata” se puede también referir a un rectángulo en la proporción 1:√2, también conocido como “un rectángulo A4” en la referencia a tamaño del papel A4 definida ya en el ISO 216.
Referencias
Categorías:- Constantes matemáticas
- Números irracionales
Wikimedia foundation. 2010.