Números primos gemelos

Números primos gemelos

En matemáticas, y más concretamente en teoría de números, dos números primos (p, q) son números primos gemelos si están separados por una distancia de 2, es decir, si q = p+2 \,\! .

Todos los números primos, excepto el 2, son impares. Los únicos dos números primos consecutivos son el 2 y el 3. La cuestión surge de encontrar dos números primos que sean impares consecutivos, es decir que se hallen a una distancia de 2. El primero en llamarlos así fue Paul Stäckel.

Contenido

Propiedades

A partir del par (5, 7), el número intermedio es siempre múltiplo de 6, por ende de 2 y de 3.

Se sabe que la suma de los inversos de todos los números primos gemelos converge a un número,

B_2 = \left(\frac{1}{3} + \frac{1}{5}\right)
+ \left(\frac{1}{5} + \frac{1}{7}\right)
+ \left(\frac{1}{11} + \frac{1}{13}\right)
+ \left(\frac{1}{17} + \frac{1}{19}\right)
+ \left(\frac{1}{29} + \frac{1}{31}\right) + \cdots \approx 1,902160583104

A esta constante se le conoce como constante de Brun. Esto contrasta con la suma de los inversos de todos los primos, que diverge.

Se ha demostrado que el par n, n + 2 es de números primos gemelos si y sólo si:

4((n-1)! + 1) \equiv -n \pmod{n(n+2)}

Distribución de los números primos gemelos

No se sabe si existen infinitos números primos gemelos, aunque se cree ampliamente que sí. Éste es el contenido de la conjetura de los números primos gemelos. Una forma fuerte de la conjetura de los números primos gemelos, la conjetura de Hardy-Littlewood, postula una ley de distribución de los números primos gemelos similar al teorema de los números primos:

\pi_2(x) \sim 2 C_2 \int_2^x {dt \over (\ln t)^2}

donde C2 es la constante de los números primos gemelos, definida mediante el siguiente producto de Euler:

 \prod_{\textstyle{p\;{\rm primo}\atop p \ge 3}} \left(1 - \frac{1}{(p-1)^2}\right) = 0,66016118\ldots

Los números primos gemelos más grandes conocidos son el par 2003663613 · 2195000 - 1 y 2003663613 · 2195000 + 1, que tienen 58711 dígitos.[1] Fueron descubiertos en 2007 por Vautier, McKibbon, Gribenko et al.

Anteriormente, el par 100314512544015 · 2171960 - 1 y 100314512544015 · 2171960 + 1, que tiene 51.780 dígitos[2] y fue descubierto en el 2006 por los matemáticos húngaros: Zoltán Járai, Gabor Farkas, Timea Csajbok, Janos Kasza y Antal Járai.

Duplas de primos gemelos

Hay 35 duplas de números primos gemelos entre los números enteros menores que 1000 y son (A077800):

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619), (641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883).

Véase también

Referencias

  1. The Prime Pages - el mayor par conocido de primos gemelos
  2. The Prime Pages

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?

Mira otros diccionarios:

  • Números primos gemelos — Dos números primos (p,q) son números primos gemelos si están separados por una distancia de 2, es decir, si q=p+2. Los primeros números primos gemelos son: pre (3,  5),    (5,  7),    (11, 13),   (17, 19),   (29, 31),   (41, 43),… …   Enciclopedia Universal

  • Conjetura de los números primos gemelos — Dos números primos se denominan gemelos si uno de ellos es igual al otro más dos unidades. Así pues, los números primos 3 y 5 forman una pareja de primos gemelos. Otros ejemplos de pares de primos gemelos son 11 y 13 ó 29 y 31. Conforme se van… …   Wikipedia Español

  • Conjetura de los números primos gemelos — Dos números primos se denominan gemelos si uno de ellos es igual al otro más dos unidades. Así pues, los números primos 3 y 5 forman una pareja de primos gemelos. Otros ejemplos de pares de primos gemelos son 11 y 13 ó 29 y 31. Conforme se van… …   Enciclopedia Universal

  • La soledad de los números primos — Autor Paolo Giordano Género Novela Idioma Español …   Wikipedia Español

  • Teoría de números — Nuestra teoría de números se deriva de la antigua aritmética griega de Diofanto.[1] Portada de la aritmética de Diofanto traducida al latín por Bachet de Méziriac, edición con comentarios de Pierre de Fermat publicada en 1670 …   Wikipedia Español

  • Anexo:Números — Contenido 1 Números enteros 1.1 Números negativos 1.2 De 0 a 99 1.3 De 100 a 200 1.4 Mayores que 2 …   Wikipedia Español

  • Teoría analítica de números — En el ámbito de las matemáticas, la teoría analítica de números es una rama de la teoría de números que utiliza métodos del análisis matemático para resolver problemas sobre los números enteros.[1] A menudo se dice que comenzó con la introducción …   Wikipedia Español

  • Número primo — Un número primo es un número natural mayor que 1, que tiene únicamente dos divisores distintos: él mismo y el 1. Se contraponen así a los números compuestos, que son aquellos que tienen algún divisor natural aparte de sí mismos y del 1. El número …   Wikipedia Español

  • Problemas de Landau — Los Problemas de Landau son cuatro conocidos problemas básicos sobre los números primos, que Edmund Landau catalogó como inabarcables en el estado actual de la ciencia durante el Quinto Congreso Internacional de Matemáticos del año 1912. Los… …   Wikipedia Español

  • Constante de Brun — La constante de Brun, B2, es el valor al que converge la suma de los inversos de los números primos gemelos: En 1919 Viggo Brun demostró la convergencia de la serie. Esto contrasta con el hecho de que la suma de los inversos de todos los números… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”