- Teoremas de isomorfía
-
Los teoremas de isomorfía, o más propiamente, teoremas de isomorfía de Noether, son tres resultados importantes de la teoría de grupos. Estos teoremas relacionan a los grupos con sus grupos cociente, y son de gran utilidad para construir isomorfismos entre diversos grupos y grupos cociente.
Pocos cambios no esenciales hacen a estos teoremas válidos también en términos de anillos y módulos en lugar de grupos.
Contenido
Primer teorema de isomorfía
Sea un homomorfismo de grupos. Entonces existe un isomorfismo , y por tanto
El primer teorema de isomorfía de Noether es una consecuencia inmediata del teorema fundamental de homomorfismos.Ejemplos
- Considérese el epimorfismo natural dado por
Es claro que si y sólo si , luego , así que
- Si An es el subgrupo alternante del grupo simétrico Sn, entonces
Segundo teorema de isomorfía
Si N y H son subgrupos de un grupo G, con N normal en G, entonces
Este segundo teorema de isomorfía se deduce del primero, pues si N es normal a G entonces también lo es , y puede demostrarse que el epimorfismo
cumple con .
Tercer teorema de isomorfía
Si N y H son subgrupos normales de un grupo G, con , entonces
Esto da lugar al diagrama conmutativo siguiente
donde φ1,φ2 son proyecciones canónicas, es la aplicación identidad y donde las flechas horizontales forman una sucesión de homomorfismos exacta.Este teorema es también consecuencia del primer teorema de isomorfía. Para una demostración de este teorema, así como de los dos primeros teoremas de ismorfía, véase, por ejemplo, el wikilibro de Álgebra, Subgrupos normales
Categorías:- Teoría de grupos
- Teoremas de álgebra
Wikimedia foundation. 2010.